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Summary

We present a spatially varying Robin interface condition for solving fluid-structure
interaction problems involving incompressible fluid flows and non-uniform flexible
structures. Recent studies have shown that for uniform structures with constant mate-
rial and geometric properties, a one-parameter Robin interface condition can improve
the stability and accuracy of partitioned numerical solution procedures. In this work,
we generalize the constant parameter to a spatially varying function that depends
on the structure’s local material and geometric properties, without varying the exact
solution of the coupled fluid-structure system. We present an algorithm to imple-
ment the Robin interface condition in an embedded boundary method for coupling a
projection-based incompressible viscous flow solver with a nonlinear finite element
structural solver.We demonstrate the numerical effects of the spatially varying Robin
interface condition using two example problems: a simplified model problem fea-
turing a non-uniform Euler-Bernoulli beam interacting with an inviscid flow, and a
generalized Turek-Hron problem featuring a non-uniform, highly flexible beam inter-
acting with a viscous laminar flow. Both cases show that a spatially varying Robin
interface condition can clearly improve numerical accuracy (by up to 2 orders ofmag-
nitude in one instance) for the same computational cost. Using the second example
problem, we also demonstrate and compare two models for determining the local
value of the combination function in the Robin interface condition.

KEYWORDS:
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1 INTRODUCTION

Extensive research has been devoted to developing partitioned procedures to couple computational fluid and structural dynamics
solvers for simulating fluid-structure interaction (FSI) problems [1, 2, 3, 4, 5]. A common approach is to enforce the kinematic
interface condition, i.e. the continuity of velocity across the fluid-structure interface, as a Dirichlet boundary condition in the
fluid solver, and to enforce the dynamic interface condition, i.e. the continuity of stress, as a Neumann boundary condition in
the structural solver. This type of Dirichlet-Neumann partitioned procedures have been used to simulate a broad range of FSI
problems, including problems with large structural deformation, compressible flow, shock waves, and fluid-induced instabilities
and failures (e.g., [6, 7, 8, 9, 10, 11])
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Nonetheless, a well-known issue of Dirichlet-Neumann partitioned procedures is that for problems involving incompressible
flow and strong added mass effect (e.g., heavy fluid, thin/slender structure), the scheme becomes unstable, regardless of the
spatial and temporal discretization schemes used in the fluid and structural solvers. This issue, often referred to as the numerical
(or artificial) added mass effect, has been formulated using simplified model problems [12, 13]. Specifically, Causin et al.
[12] showed that a partitioned procedure becomes unconditionally unstable when the structure-to-fluid density ratio is below
a threshold or the structure has a slender shape. Förster et al. [13] also investigated the stability criterion for several different
temporal discretization schemes, and showed that they all become unconditionally unstable under strong added mass effect. A
widely used approach to mitigate the numerical added mass effect is to perform subiterations between the fluid and structural
solvers in the fashion of the Gauss-Seidel method [14, 15, 16, 17]. The drawback of this approach is obvious: it multiplies
the computational cost by the number of subiterations. For example, Badia et al. [16] showed that to simulate a pressure wave
propagating in a deformable pipe, a Dirichlet-Neumann partitioned procedure requires more than 100 subiterations per time step
when the structure-to-fluid density ratio is equal to one.
Over the past decade, several research teams have investigated the use of Robin interface condition to mitigate the numerical

added mass effect [18, 19, 5, 20, 21, 22, 23, 24, 25, 26, 27]. The basic idea is to substitute the kinematic interface condition by its
linear combination with the dynamic interface condition. The resulting Robin-Neumann interface conditions are mathematically
equivalent to the original Dirichlet-Neumann conditions, as long as the combination factor — denoted by �f in this paper and
several others — is nonzero. It has been shown that when �f is carefully chosen, a Robin-Neumann partitioned procedure
can eliminate the requirement of subiteration or reduce the number needed to achieve stability. For example, Badia et al. [18]
proposed to design �f based on simplified model equations (e.g., a linear piston), and have shown that for an example problem
with a uniform membrane, a speed-up of up to one order of magnitude can be achieved. Nobile et al. [19, 5, 20] and Fernandez
et al. [21, 22] have introduced the Robin interface condition to different types of partitioned procedures and fluid/structural
governing equations, and demonstrated their performance in the context of blood flow - vessel wall interaction. To solve FSI
problems involving complex geometry and large deformation, Cao et al. [23] have developed an algorithm to enforce the Robin
interface condition using an embedded boundary method. We have also shown that when choosing the value of �f , there is a
trade-off: smaller values of �f tend to improve numerical stability, while larger values give smaller numerical errors. Also, Li et
al. [24] have introduced the Robin interface condition to the overset mesh framework. Basting et al. [25] have implemented it in
an Arbitrary Lagrangian-Eulerian (ALE) framework with a variational mesh optimization algorithm. More generally, the idea
of constructing a Robin interface condition to couple different physical domains has been applied to solve other multiphysics
problems, such as fluid-structure-thermal interaction [28] and multiscale fracture mechanics [29].
Notably, previous studies on the use of Robin interface condition for fluid-structure coupling have focused on uniform struc-

tures with globally constant material and geometric properties. Examples include uniform beams and thin-walled tubes with
constant thickness, density and elastic moduli. Moreover, previous studies have assumed that the Robin combination factor �f is
also a constant; while at the same time, several authors have suggested that in order to mitigate the numerical added mass effect,
the value of �f must be determined based on the material and geometry of the specific problem being solved (e.g., [18, 26, 23]).
In this work, we generalize �f to a spatially varying function, and investigate its numerical effects for FSI problems involving
structures with spatially varying material properties. This study is motivated by three considerations. First, in real-world FSI
problems, the structure of interest is often non-uniform, and may have complex geometry. For example, the density and the
thickness of a thin-walled structure, either man-made or natural, often takes different values at different locations. Second, the
previous findings mentioned above naturally suggest that if the geometric and material properties of the structure vary from one
point to another, a globally constant �f may not be optimal. It may be beneficial to generalize �f to a variable function. Third,
after generalizing �f to a spatially varying function, the Robin-Neumann interface conditions remain mathematically equivalent
to the original Dirichlet-Neumann conditions (as long as �f ≠ 0). In other words, the generalization does not change the true
solution of the coupled fluid-structure system.
More specifically, in this paper we address the following questions.

• Would a spatially varying combination function, �f (X), outperform a constant �f in terms of numerical accuracy and/or
stability?

• If the answer to the above question is yes, how to design the function �f (X) in order to achieve the improvement?

The remainder of this paper is organized as follows. In Section 2, we describe the context of this work by specifying the
fluid and structural governing equations, constitutive models, and the Robin-Neumann interface conditions. Briefly speaking,
we consider incompressible laminar fluid flows interacting with thin, elastic structures. Next, in Section 3 we investigate the



CAO ET AL 3

effects of spatially varying �f (X) using a simplified model problem, in which the structure is an Euler-Bernoulli beam and
the fluid domain is assumed to be fixed in time. Further, in Section 4, we consider a more realistic model problem, that is, a
generalized Turek-Hron problem in which the flexible beam consists of multiple segments with different material properties.
Using this example, we present the implementation of spatially varying �f (X) in an embedded boundary framework, and discuss
its numerical effects. In Section 5, we present and compare two model equations for determining the local value of the spatially
varying combination function. Finally, we provide a few concluding remarks in Section 6.

2 PHYSICAL MODEL

2.1 Fluid and structural governing equations
We consider an incompressible viscous fluid flow interacting with a deformable structure, possibly with complex geometry and
spatially varying material properties. The physical model couples the fluid governing equations defined inΩf and the structural
governing equations defined in Ωs (Figure 1). The fluid-structure interface, Σ, is thus defined by Σ = )Ωf ∩ )Ωs. In this
paper, we further assume that the fluid is Newtonian and the flow is laminar. Hence, its dynamics is governed by the following
incompressible Navier-Stokes (N-S) equations.

F (U, P ) = 0 ∶=
⎧

⎪

⎨

⎪

⎩

∇ ⋅ U = 0 inΩf ,
)U
)t
+ U ⋅ ∇U − �ΔU + 1

�f
∇P = 0 inΩf ,

(1a)

(1b)

where t denotes time, �f is the fluid density, U is the fluid velocity vector, P is the fluid pressure and � the kinematic viscosity.
On the outer boundary of the fluid domain, different types of boundary conditions such as no-slip wall, inlet and outlet conditions
may be applied, which can be written collectively as

B(U, P ) = 0 on )Ωf ⧵ Σ. (2)

𝒕𝟏

𝒕𝟐

𝛀𝐟
𝛀𝐬

𝛀𝐬

Fluid-structure 
interface Σ

Non-uniform 
structure

𝒕𝟏

𝒕𝟐

Cutting plane

FIGURE 1 A fluid-structure interaction problem.

The structure is assumed to be elastic, and can have spatially varying material properties. To account for the possibility of
large deformation, geometric nonlinearity is considered. Therefore, the dynamic equilibrium of the structure can be formulated
as

S (d (X, t)) = 0 ∶= �s (X)
)2d (X, t)
)t2

− ∇ ⋅
(

J−1FSFT
)

− �s (X)b (X, t) = 0 inΩs, (3)

where X denotes the material coordinates, d denotes displacement, �s denotes mass density, S is the second Piola-Kirchhoff
(PK2) stress tensor, F is the deformation gradient, J = det F, and b denotes the body force per unit mass which is assumed to
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be zero here. In this work, we apply the St. Venant-Kirchhoff constitutive model, given by

S = �str(E)I + 2�sE, (4)

where I is the identity matrix, and E = 1
2
(FTF − I). �s and �s are the Lamé coefficients.

The fluid-structure interface is assumed to be impermeable. Thus, the fluid and structural governing equations are coupled by
a kinematic interface condition, i.e. the continuity of velocity (Eq. (5a)), and a dynamic interface condition, i.e. the continuity
of stress (Eq. (5b))

U = )d
)t

onΣ,

�fn = �sn onΣ,

(5a)

(5b)
where n denotes the unit normal pointing towards Ωs. �f denotes the fluid stress tensor, given by �f = −P I + 2�f e, where e
is the fluid strain rate tensor, and �f denotes the dynamic viscosity. �s denotes the Cauchy stress tensor of the structure, which
can be related to PK2 stress by

�s = J−1FSFT .

2.2 Spatially varying Robin interface condition
The Dirichlet interface condition, Eq. (5a), can be substituted by its linear combination with the Neumann interface condition,
Eq. (5b), yielding a Robin interface condition. In this way, we obtain a pair of Robin-Neumann interface conditions1, i.e.

�f (X)
DU
Dt

+ �fn = �f (X)
)2d
)t2

+ �sn onΣ,

�fn = �sn onΣ,

(6a)

(6b)
where D∕Dt = )∕)t + U ⋅ ∇, and �f is the linear combination parameter. As mentioned in Section 1, previous studies have
assumed �f to be a constant parameter. Here, we generalize it to be a spatially varying function.
Equipped with this new pair of interface conditions, the fluid and structural sub-systems can be written as

F (U, P ) = 0 inΩf

Fluid:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

B(U, P ) = 0 on )Ωf ⧵ Σ

�f (X)
DU
Dt

+ �fn = �f (X)
)2d
)t2

+ �sn onΣ

S (d) = 0 inΩs
Structure:

{

�sn = �fn onΣ

(7a)

(7b)

(7c)

(7d)

(7e)
Next, we investigate the effect of the generalized, spatially varying �f on the stability and accuracy of partitioned solution

procedures, starting with a simplified model problem.

3 A SIMPLIFIED MODEL PROBLEM

3.1 Model setup
We consider a simplified model problem, in which a linear inviscid incompressible flow interacts with a non-uniform Euler-
Bernoulli beam. Figure 2 presents a schematic drawing of the problem setup. The structure is a simply-supported Euler-Bernoulli
beam, featuring lengthwise variation of density, �s(x) (Eq. (8a)). The other relevant material and geometric parameters —
namely Young’s modulus (E), and the width (b) and thickness (ℎ) of the beam’s cross section— are still assumed to be constant
parameters. The fluid domain is a rectangular box underneath the beam, i.e. Ωf = (0, L) × (0,H). Given the small deformation
of the beam, we assume that Ωf does not change in time. Also, assuming an inviscid flow with a velocity field that has zero
mean (in time) and small disturbance, the middle two terms in Eq. (1b) can be dropped, which leads to Eq. (8b). The left and
right boundaries are assumed to be periodic (Eq. (8e)), while the bottom boundary is assumed to be a wall (Eq. (8d)).

1We note that in this work, as well as some previous studies (e.g., [24, 22]), the Robin condition combines the time derivative of Eq. (5a) with Eq. (5b), whereas in
some other studies (e.g., [18]), the Robin condition directly combines Eq. (5a) with Eq. (5b).



CAO ET AL 5

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

EI )
4W
)x4

+ �s(x)bℎ
)2W
)t2

= f (x, t) in (0, T ) × Ωs

�f
)U
)t
+ ∇P = 0 in (0, T ) × Ωf

∇ ⋅ U = 0 in (0, T ) × Ωf
U ⋅ n = 0 onΓB
)P
)n

|

|

|ΓL
= )P
)n

|

|

|ΓR
, P ||

|ΓL
= P ||

|ΓR
,

(8a)

(8b)

(8c)

(8d)

(8e)

Here,W denotes the transverse displacement of the beam. �f , U , and P denote fluid density, velocity, and pressure, respec-
tively. ΓL, ΓR and ΓB denote the left, right and bottom boundaries of Ωf , respectively. f denotes the flow-induced force on the
beam.
Since the beam is simply supported on both ends, we have

W (0, t) = W (L, t) = 0 and )2W (0, t)
)x2

=
)2W (L, t)

)x2
= 0, ∀t > 0. (9)

On the fluid-structure interface (Σ), the kinematic and dynamic interface conditions are given by

U ⋅ n = )W
)t

and f = Pb onΣ, (10)

where n is the unit surface normal vector pointing towards the structure.

Ω𝑓
𝑃 = 𝑃 𝑥, 𝑦, 𝑡
𝑼 = 𝑼(𝑥, 𝑦, 𝑡)

𝑥

𝑦

(0,0)
𝐿

𝐻

Γ𝐵

Γ𝑅Γ𝐿

Σ Ω𝑆

𝑾 =𝑾(𝑥, 𝑡)

FIGURE 2 A simplified fluid-structure interaction model.

Combining Eqs. (8b) and (8c), we can eliminate the fluid velocity U from the system. Also, we combine the kinematic and
dynamic interface conditions into a Robin interface condition, with a spatially varying combination factor �f (x). After these
manipulations, we obtain the following system of equations.
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

EI )
4W
)x4

+ �s(x)bℎ
)2W
)t2

= f (x, t) in (0, T ) × Ωs

W = 0, )
2W
)x2

= 0, at x = 0 and x = L

∇2P = 0 in (0, T ) × Ωf
)P
)y

= 0 onΣB

)P
)y

|

|

|ΓL
= )P
)y

|

|

|ΓR
, P ||

|ΓL
= P ||

|ΓR
,

�f (x)
)P
)y

+ Pb = −�f (x)�f
)2W
)t2

+ f onΣ

f = Pb. onΣ

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

(11g)

We consider two representative cases in which the beam’s density is defined to be a smoothed step function.

• Case 1 (Figure 3(a)): The beam’s density, �s(x), features two distinct values with a smooth transition in between. It is
defined by

�s(x) =
�s1 + ex−c�s2
ex−c + 1

, (12)

where �s1 = 50 kg∕m3 and �s2 = 4000 kg∕m3 define the two density values, i.e. the two “steps”. c and  are two parameters
that control the location and width of the transition zone. Here, c = 100,  = 200 m−1.

• Case 2 (Figure 3(b)): The beam’s density, �s(x), features six steps. It is defined by

�s(x) =
�(k)s + ex−c(k)�(k+1)s

ex−c(k) + 1
,

(k − 1)L
5

≤ x ≤ kL
5
, k = 1, 2, 3, 4, 5. (13)

In this case, �(1)s = 4000 kg∕m3, �(2)s = 2025 kg∕m3, �(3)s = 50 kg∕m3, �(4)s = 1366.67 kg∕m3, �(5)s = 2683.33 kg∕m3, and
�(6)s = 4000 kg∕m3. Also, c(1) = 20, c(2) = 60, c(3) = 100, c(4) = 140, and c(5) = 180,  = 200 m−1.
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3
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(a) Case 1
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3500
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(b) Case 2

FIGURE 3 Two representative cases of non-uniform Euler-Bernoulli beam with spatially varying density.
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In both cases, E = 30 GPa, b = 0.01 m, ℎ = 0.03 m, L = 1 m,H = 1 m, and �f = 876 kg∕m3. The initial displacement and
acceleration of the beam are set to zero. The initial value of velocity is defined by

v(x, 0) = v0 sin
(2n�x
L

)

, (14)

where v0 = 17.28 m∕s and n = 3. In addition, the initial (dynamic) pressure of the fluid is set to zero.
We solve this model problem using a standard partitioned procedure. The two-dimensional Laplace equation of the fluid

sub-system is solved using the five-point finite difference scheme. The structural equation is semi-discretized using a standard
Galerkin finite element method, then integrated in time using the Hilbert-Hughes-Taylor � (HHT-�) method. Additional details
of the numerical solution procedure are provided in Appendix A.

Remarks:

• A simpler version of this problem, in which the beam has uniform density and �f is a constant, has been solved both
numerically and analytically (e.g., [30, 23]). Cao et al. [23] have derived the value of �f that optimizes the trade-off
between numerical stability and accuracy, i.e.

�f,opt =
2

�f

(

1
ms

− 1
ma

) , (15)

where ms = �sbℎ and ma =
�fb

k tanh(kH)
represent respectively the structural mass and the added mass of the fluid.

The fact that �f,opt depends on the structure’s material and geometry (and how they compare with properties of the fluid
flow) naturally suggests that for structures with spatially varying material properties or complex geometry, it may be
advantageous to generalize �f to a spatially varying function.

• In addition to the density of the beam, other parameters such as EI , b and ℎ can also be generalized to spatially varying
functions. We have tested some of these parameters. The results and findings obtained using a spatially varying density
— to be presented in the next subsection — are found to be representative.

3.2 Numerical analysis: Constant �f versus �f (x)
3.2.1 Case 1
Figures 4 and 5 show the converged numerical solution, which will be used as a reference for analyzing the effect of �f (x) on
accuracy. The accuracy of this reference solution has been verified by mesh convergence analysis and by comparison with the
solution of a monolithic procedure, described briefly in Appendix A. Because of the spatial variation of the beam’s density,
the time history of mid-point deflection is not periodic (Figure 4), although the initial condition is a sine function. For the
same reason, the magnitude of beam deflection and the fluid pressure are not symmetric with respect to the midline of the
computational domain (x = 0.5 m).
Figure 6 presents the solutions obtained using the Robin-Neumann interface conditions with different constant values of �f ,

in comparison with the reference solution. Both the fluid and the structural meshes have a resolution of 0.01 m. The time step
size is set to be relatively large — specifically, 2 × 10−6 s — such that numerical errors can be easily observed and compared.
Three different choices of �f are presented in the figure, specifically, 3.0 × 10−5, 4.0 × 10−5, and 5.0 × 10−5 m2 (for simplicity,
we omit the unit m2 for �f in the rest of Section 3). Evidently, as �f increases, the solution becomes more accurate. This is
consistent with the result by Cao et al. [23] for a uniform beam with constant density. It is also notable that when �f exceeds
5.0 × 10−5, the numerical scheme becomes unconditionally unstable. For example, Figure 7 shows that with �f = 5.1 × 10−5,
the solution blows up in less than 0.2 ms. Therefore, numerically we have found that for a specific pair of mesh resolution and
time step size — which indicates a fixed computational cost — the most accurate solution that can be obtained using a constant
�f is given by �f = 5.0 × 10−5. The observed trade-off between accuracy and stability, when selecting a constant value for �f ,
is also consistent with the finding of Cao et al. [23].
Next, we investigate the effects of a spatially varying �f (x). Given that the beam density is a smoothed step function, we

consider a simple model for �f (x) that shares the same shape. Specifically, we define

�f (x) = �f0
�s(x)
�s0

, (16)
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t (s)
0.01 0.012 0.014 0.016 0.018
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)

×10
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0

5

FIGURE 4 Converged solution of Case 1: Time history of beam displacement at the mid-point (x = 0.50 m).
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FIGURE 5 Snapshots of the converged solution of Case 1. Left: Beam deflection. Right: Fluid pressure. (Only the region above
y = 0.7 m, where pressure varies significantly, is shown.)

where �s0 is the minimum value of density along the beam (50 kg∕m3 in this case), and �f0 is a constant value estimated based
on �s0. In this case, we set �f0 = 5 × 10−5.
Figure 8 presents the relative error of the solution obtained using the above �f (x), in comparison with the most accurate

solution that can be obtained using a constant �f , i.e. with �f = 5.0 × 10−5. Evidently, the use of a spatially varying function
�f (x) leads to a reduction of numerical error in both the fluid and the structural solutions. Specifically, the maximum relative
error in beam deflection decreases by 21.09%, from 0.3930 to 0.3102, while in fluid pressure it decreases by 20.09%, from
0.3300 to 0.2637.
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𝜶𝒇 𝝐𝑾 ∞ 𝝐𝑾 𝟐

5×10−5 0.3930 0.0167

4×10−5 0.4653 0.0198

3×10−5 0.5731 0.0244

𝜶𝒇 𝝐𝑾 ∞ 𝝐𝑾 𝟐

5×10−5 0.3930 0.0167

4×10−5 0.4653 0.0198

3×10−5 0.5731 0.0244

(a) Beam displacement

𝜶𝒇 𝝐𝑷 ∞ 𝝐𝑷 𝟐

5×10−5 0.3300 0.0165

4×10−5 0.3802 0.0194

3×10−5 0.4565 0.0238

𝜶𝒇 𝝐𝑾 ∞ 𝝐𝑾 𝟐

5×10−5 0.3930 0.0167

4×10−5 0.4653 0.0198

3×10−5 0.5731 0.0244

(b) Fluid pressure at the fluid-structure interface

FIGURE 6 Beam displacement at t = 0.0015 s obtained using different constant values of �f , in comparison with the converged
reference solution. �W and �P denote the relative error in beam displacement and the fluid pressure at interface, normalized
using their maximum values.

3.2.2 Case 2
For reference, Figure 9 shows a few snapshots of the converged fluid and structural solutions, which are independent of the
choice of �f .
When a constant �f is applied, we find again, for fixed mesh resolution and time step size, the numerical solution becomes

more accurate as the value of �f increases, until �f reaches a critical value, after which the solution blows up. For a 100-element
structural mesh, a 100 × 100 fluid mesh, and a time step size of 2 × 10−6 s, this critical value is found to be 5.0 × 10−5, same as
in Case 1. This is likely because in both cases, the minimum value of the density function �s(x) are the same.
To investigate the effect of spatially varying �f (x), we adopt the same model function introduced in Case 1, i.e. Eq. (16).

Again, we set �s0 = 50 kg/m3 and �f0 = 5.0×10−5, based on the minimum value of the beam’s density. Figure 10 compares the
relative error in the structural and fluid solutions obtained using �f (x) with the most accurate solution that can be obtained with
a constant �f , i.e., with �f = 5.0× 10−5. Comparing with Figure 8 (Case 1), we find that the benefit of using a spatially varying
�f (x) is more significant in this case. Specifically, the maximum relative error in beam deflection and fluid pressure is reduced
by 47.44% and 42.47%, respectively. Again, we note that this error reduction is achieved by exploiting the spatial variation of
the structure’s material property, with virtually no increase in computational cost.

4 A MODIFIED TUREK-HRON MODEL PROBLEM

Based on the result obtained from the simplified model problem, we nowmove onto solving Eqs. (7) and investigating the effects
of spatially varying Robin interface condition in a more realistic setting.

4.1 Problem description
We consider a two-dimensional laminar incompressible channel flow interacting with a non-uniform, nonlinear beam mounted
on the back of a fixed cylinder. Figure 11 shows the geometry of the problem. It is similar to the well-known Turek-Hron
benchmark problem [31], except that the attached beam considered here consists of two segments, denoted by ΓA and ΓB , with
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FIGURE 7 Time history of mid-point beam displacement obtained with �f = 5.1 × 10−5.
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FIGURE 8 Comparison of constant �f and a spatially varying function �f (x) for Case 1.

significantly different mass densities. Specifically, the structure-to-fluid density ratio, �s∕�f , is 0.3 in ΓA and 10.0 in ΓB . This
indicates that segment ΓA is subjected to stronger added mass effect. At the inflow boundary of the fluid domain, the following
velocity profile is prescribed.

u (0, y, t) = 1.5Ū
y (H − y)
(H∕2)2

, v (0, y, t) = 0, (17)

where u and v denote the velocity components in the x and y directions.H is the height of the fluid domain and Ū is the average
inflow velocity. At the channel outlet (i.e. the right boundary of the fluid domain), a “do nothing” boundary condition is applied.
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FIGURE 9 Snapshots of the converged solution of Case 2. Left: Beam deflection. Right: Fluid pressure. (Only the region above
y = 0.7 m, where pressure varies significantly, is shown.)

x (m)
0 0.2 0.4 0.6 0.8 1

ϵ W

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
αf = 5× 10−5 (constant)

αf (x) = αf0
ρs(x)

ρs0

x (m)

0 0.2 0.4 0.6 0.8 1

ϵ P

-0.4

-0.2

0

0.2

0.4

0.6 αf = 5× 10−5 (constant)αf (x) = αf0
ρs(x)ρs0

(a) Relative error in beam deflection

x (m)

0 0.2 0.4 0.6 0.8 1

ϵ P

-0.4

-0.2

0

0.2

0.4

0.6 αf = 5× 10−5 (constant)αf (x) = αf0
ρs(x)ρs0

(b) Relative error in fluid pressure at the interface (i.e. y = 1 m)

FIGURE 10 Comparison of constant �f and a spatially varying function �f (x) for Case 2.

The no-slip boundary condition is enforced on the top and bottom walls. At the beginning of the simulation, the beam is at rest
and straight as shown in the figure. Specific parameter values involved in this problem are given in Table 1.

4.2 Numerical solution approach
We employ the fluid-structure coupled computational framework recently developed by Cao et al. [23]. The main components
of this framework include a projection-based incompressible flow solver, a finite element structural dynamics solver, and an
embedded boundary method to enforce the Robin transmission condition. The computational framework has been verified using
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FIGURE 11 Geometry of the modified Turek-Hron benchmark problem.

Segment ΓA Segment ΓB Fluid
parameter �s[kg∕m3] �s �s[kg∕(ms2)] �s[kg∕m3] �s �s[kg∕(ms2)] �f [kg∕m3] �f [m2∕s] Ū [m∕s] Re
value 300 0.4 5.0 × 105 1.0 × 104 0.4 5.0 × 105 1 × 103 1 × 10−3 1 100

TABLE 1 Parameters of the problem (�s: density of the structure; �s: Poisson’s ratio; �s: shear modulus; �f : density of the fluid;
�f : kinematic viscosity).

the original Turek-Hron benchmark problem with a uniform beam [31]. In this work, we extend the computational framework
to enable the use of spatially varying Robin interface condition, i.e. Eq. (7c), and apply it to solve the modified Turek-Hron
problem.
Specifically, the coupling between the fluid and structural sub-systems is based on an implicit coupling scheme which solves

the two sub-systems iteratively at each time step. The following equations are solved to advance the system from time tn to tn+1.

F (Un+1k+1, P
n+1
k+1 ) = 0 inΩf

Fluid:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

B(Un+1k+1, P
n+1
k+1 ) = 0 on )Ωf ⧵ Σ

�f (X)
DUn+1k+1

Dt
+ �n+1f,k+1n = �f (X)

(

)2d
)t2

)n∙

k
+ �n∙s,kn onΣ

S (dn+1k+1) = 0 inΩs
Structure:

{

�n+1s,k+1n = �
n∙
f,kn onΣ

(18a)

(18b)

(18c)

(18d)

(18e)
where k is the index of subiteration. Also,

n∙ =
{

n, if k = 0,
n + 1, otherwise.

At the fluid-structure interface (Σ), the latest solution information (i.e. fluid traction, structural acceleration and stress) are
exchanged between the fluid and structural solvers, leading to a Gauss-Seidel type iteration.
To advance the fluid sub-system, the incompressible N-S equations are solved using a six-step, finite-difference projection

method [32] on a cell-centered, collocated Cartesian grid. The spatially varying Robin interface condition, Eq. (18c), is enforced
on the fluid-structure interface using an embedded boundary method. Specifically, we first discretize Eq. (18c) in time by

�f (X)
[

Un+1k+1 − U
n

Δt
+ (U ⋅ ∇U)n∙k

]

+ �n+1f,k+1n = �f (X)
(

)2d
)t2

)n∙

k
+ �n∙s,kn onΣ, (19)

where the structural acceleration
(

)2d∕)t2
)

is computed by the structural solver, then transferred to the fluid solver. Then, we
apply an operator splitting method to split Eq. (19) in the same fashion as the projection method in the incompressible flow
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solver. This leads to

U∗,n+1k+1 = Un + Δt
�f (X)

{

−�∗,n+1f,k+1n + �f (X)
(

)2d
)t2

)n∙

k
+ �n∙s,kn − �f (X) (U ⋅ ∇U)n∙k

}

onΣ,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
�f (X)
Δt

(

)�
)n

)n+1

k+1
+ �̂n+1f,k+1n ⋅ n = 0 onΣ.

(20a)

(20b)

Here, U∗ denotes the intermediate velocity, i.e. the solution of the fluid momentum equation. � is an auxiliary variable in
projection step. �∗ and �̂ denote the two components of the decomposed fluid stress tensor. Eq. (20a) is enforced on the embedded
interface as the boundary condition for U∗, using a ghost-cell method [33]. Eq. (20b) is enforced on the embedded interface as
the boundary condition for Poisson’s equation in projection step, using an asymmetric finite difference scheme [34, 35]. The
algorithm for solving the fluid sub-system is summarized in Algorithm 1. For additional details of the projection method and
the embedded Robin boundary method, we refer the reader to [23].

Algorithm 1 Algorithm for the fluid sub-system

1: Solve the momentum equation for intermediate velocity U∗,n+1k+1 :

(I − �2�L)(I − �1�L)U
∗,n+1
k+1 = (I + �3�L)Un − Δt(I + �4�L)

(

Nn+
1
2 + 1

�f
GP n− 1

2

)

inΩf ,

U∗,n+1k+1 = Un + Δt
�f (X)

{

−�∗,n+1f,k+1n + �f (X)
(

)2d
)t2

)n∙

k
+ �n∙s,kn − �f (X) (U ⋅ ∇U)n∙k

}

onΣ.

(21)

(22)

where L andG denotes the discrete Laplace operator and the discrete gradient operator, I is the identity operator, and Nn+
1
2

represents an approximation of the nonlinear advection term.
2: Project U∗,n+1k+1 onto a space that satisfies the divergence-free constraint:

L(�n+1k+1) = DU
∗,n+1
k+1 inΩf ,

−
�f (X)
Δt

(

)�
)n

)n+1

k+1
+ �̂n+1f,k+1n ⋅ n = 0 onΣ.

(23)

(24)

where D denotes the discrete divergence operator.
3: Update velocity at time tn+1:

Un+1k+1 = U
∗,n+1
k+1 −G�n+1k+1. (25)

4: Solve the momentum equation again without the pressure gradient term for intermediate velocity Ũ∗,n+1k+1 :

(I − �2�L)(I − �1�L)Ũ
∗,n+1
k+1 = (I + �3�L)Un − Δt(I + �4�L)N

n+ 1
2 inΩf ,

Ũ∗,n+1k+1 = Un + Δt
�f (X)

{

−�∗,n+1f,k+1n + �f (X)
(

)2d
)t2

)n∙

k
+ �n∙s,kn − �f (X) (U ⋅ ∇U)n∙k

}

onΣ.

(26)

(27)

5: Project Ũ∗,n+1k+1 onto a space that satisfies the divergence-free constraint:

L(�̃n+1k+1) = DŨ
∗,n+1
k+1 inΩf ,

−
�f (X)
Δt

(

)�̃
)n

)n+1

k+1

+ �̂n+1f,k+1n ⋅ n = 0 onΣ.

(28)

(29)

6: Update fluid pressure at time tn+1:

P
n+ 1

2
k+1 =

�f
Δt
(I + �4�L)−1(I − �2�L)(I − �1�L)�̃n+1k+1 inΩf . (30)
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Again, we emphasize that in Eq. (20), �f is a spatially varying function. Nonetheless, as long as a closed-form formulation is
available, the computational overhead caused by this generalization is negligible.
For the structural sub-system, we consider a geometrically nonlinear beam in 2-D, and semi-discretize the governing equation

(Eq. (18d)) using the continuum-based beam element [36]. Specifically, the beam is modeled as a set of adjoining quadrilateral
beam elements, which relies on two assumptions: (1) the fibers are straight and inextensible; and (2) the beam is in a state of
plane stress. The equation of motion for each element can be written as

Meüme + T
T
eM

s
eṪeu̇

m
e + f

int = f ext, (31)

where ume denotes the motion of the master nodes, Me is the mass matrix, Te is the transformation matrix, Ms
e is the mass

matrix for the quadrilaterial continuum element. f int and f ext denote the internal and external nodal forces, respectively. The
time integration of Eq. (31) is done using the Newmark-� algorithm. To avoid redundancy, we refer the reader to Main [37] for
additional details of the structural solver.

4.3 Result
Figures 12 and 13 present the converged numerical solution, specifically, the fluid vorticity, pressure and the beam ’s deformation
at four time instants during one period of beam vibration. It is clear that vortex shedding and vortex-induced structural vibration
are the dominating features of this problem. In addition, Figure 14(a) presents the time history of the vertical displacement (�y)
at the beam tip (i.e. point a in Figure 11). After the beam reaches a periodic steady state, the tip displacement varies within
�y ∈ [−0.089, 0.0915]m, with a period of 0.48 seconds. It is interesting to compare the solution of the current problem with that
of the original Turek-Hron benchmark problem (test case FSI-2), as they only differ in the beam’s density within ΓA. Figure 14(b)
compares the vertical displacement at the beam tip. Even though the density within ΓA is more than one order of magnitude
smaller in the current problem, the vibration frequency and amplitude only change slightly. This is because the other properties
of the beam (e.g., elastic moduli, thickness) and the Reynolds number of the flow remain unchanged. And the Reynolds number
is known as the key factor of the vortex shedding of the cylinder that drives the beam’s vibration.
To obtain a reference solution for error analysis, a mesh convergence analysis has been conducted using Cartesian fluidmeshes

with resolution of 250 × 50, 500 × 100, and 1000 × 200. The solutions obtained using the last two meshes differ by less than
2%, in terms of the maximum vertical displacement at the beam tip. A temporal convergence analysis has also been conducted
for 3.0 × 10−4 s ≤ Δt ≤ 1.2 × 10−3 s, using the 500 × 100 fluid mesh and 80 beam elements (Figure 15). The solutions given
by Δt = 6.0 × 10−4 s and Δt = 3.0 × 10−4 s differ by 2.1%, also in terms of the maximum vertical displacement at the beam
tip. The results presented in Figures 12, 13, and 14 are computed using the 1000 × 200 fluid mesh, a structural mesh with 160
elements, and a time step size of 4.1 × 10−4 s. Also, six fluid-structure subiterations are performed at each time step.

4.4 Constant �f versus �f (X)
We design two groups of numerical experiments. In the first group, a constant �f is specified over the entire beam structure. In
the second group, a spatially varying �f (X) is applied. Specifically, because the beam has two segments, and the density remains
constant within each segment, we define �f (X) to be a piecewise constant function, given by

�f (X) = �f,A1ΓA + �f,B1ΓB =
{

�f,A, in ΓA,
�f,B , in ΓB .

(32)

All the computations are carried out using a 500 × 100 fluid mesh, a structural mesh with 80 elements, a time step of 8.2 ×
10−4s, and a fixed number of subiterations (3 per time step). Hence, the results from both groups are obtained with the same
computational cost.
In the first group, we vary the value of �f over a broad range, from 2.0 to 1.0 × 106 kg/m2, and determine the threshold value

for achieving numerical stability. For simplicity, we omit the unit kg/m2 for �f in the rest of the paper. The result shows that
the solution is stable if and only if �f ≤ 4.25. This is demonstrated by Figure 16 in which the fluid pressure fields obtained
with �f = 4.25 and �f = 4.5 are compared. It is clear that for �f = 4.5— a value slightly above the limit — the pressure field
oscillates, and as time increases, both the structural and the fluid solutions blow up. Notably, the numerical instability initiates
around segment ΓA of the beam, where the structure-to-fluid density ratio is small. This indicates that if a constant �f is used for
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FIGURE 15 Temporal convergence result

solving FSI problems with a non-uniform structure, the largest value of �f that can be used (to achieve better accuracy without
losing stability) is likely determined by the region with strongest added mass effect.
To examine the effect of constant �f on numerical accuracy, Figure 17 presents the solutions obtained with three values,

�f = 4.25, 4.0, and 3.0, in comparison with the converged reference solution. It is clear that the solution becomes less accurate
as �f is reduced. The trade-off between stability and accuracy is consistent with the finding shown by Cao et al. [23] for the
original Turek-Hron problem. Notably, the solution obtained with �f = 4.25 represents the most accurate solution that can be
obtained using a constant �f for the chosen meshes, time step size, and number of subiterations (i.e. a fixed computational cost).
In the second group of experiments, we consider the use of a piecewise constant �f (X), with �f,A fixed to 3.0, and �f,B varied

over a broad range, from 3.0 to 1.0 × 106. For example, Figure 17 shows the solutions of two trials, �f,B = 100.0 and 1.0 × 106,
in comparison with the reference solution. In both cases, the predicted maximum displacement at beam tip differs from the
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FIGURE 17 Comparison of beam tip displacement obtained with different constant values of �f and spatially varying �f (X).

reference solution by less than 1%. More importantly, for both cases, the solutions are more accurate than the most accurate
solution that can be obtained using a constant �f .
Table 2 summarizes the relative error in maximum vertical tip displacement (�d) obtained using different constant values of

�f and spatially varying �f (X). Comparing the trials in each group — that is, trials 1 through 4 and 5 through 8 — we find
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that for both constant and spatially varying �f , numerical accuracy improves as �f increases, until exceeding the stability limit.
Comparing trial 1with trial 7, it is evident that increasing the value of �f in ΓB from 3.0 to 100.0 leads to dramatic improvement
in accuracy. In this case, �d decreases from 82.9% to 0.2%, by a factor of over 415. Also, comparing trial 3 with trial 7, we see
that for this benchmark problem, a spatially varying �f outperforms the optimal constant value of �f by a factor of 93, without
increasing the computational cost.

Constant �f Spatially varying �f
Trial no. 1 2 3 4 5 6 7 8
�f 3.0 4.0 4.25 4.5 3.01ΓA + 5.01ΓB 3.01ΓA + 10.01ΓB 3.01ΓA + 10

21ΓB 3.01ΓA + 10
61ΓB

�d 82.9% 19.7% 18.6% N/A* 20.0% 10% 0.2% 0.2%
* unstable.

TABLE 2Comparison of constant values of �f with spatially varying �f : Numerical error in maximum vertical tip displacement
(�d).

5 MODELS FOR THE SPATIALLY VARYING COMBINATION FACTOR

5.1 Two models
We present two models for determining the local value of �f (X) in the spatially varying Robin interface condition (Eq. (7c)).
Based on the findings shown in the previous sections, we take two factors into account in the design of such models. First, the
model should account for the trade-off between stability and accuracy, i.e., one would prefer to increase the value of �f , but must
avoid “falling off the cliff”, that is, exceeding the stability limit. Second, a point on the structure subjected to stronger added
mass effect requires a smaller value of �f at that point to maintain stability.
Previous studies have indicated that �f should depend on the density of the structure and — for thin-walled and slender

structures — its thickness (e.g., [18, 23]). Therefore, we first build a model in which the local value of �f (X) varies linearly
with the local structural mass per unit area. Specifically, we propose

Model 1: �f (X) = �f,0
�s(X)ℎ(X)
�s0ℎ0

, (33)

where �s(X) and ℎ(X) denote the density of the structure and its thickness. �s0ℎ0 is a normalization factor, defined here to be the
minimum structural mass per unit area on the structure. �f,0 is a constant that should be chosen based on �s0ℎ0 (corresponding
to the point on the structure with strongest added mass effect) in order to achieve better accuracy without losing stability.
The second model exploits the simplified model problem presented in Section 3, but with a uniform beam. For this problem,

we have derived an optimal constant value of �f , i.e. Eq. (15). Based on this finding, we propose

Model 2: �f (X) =
⎧

⎪

⎨

⎪

⎩

C
Ms(X)Ma

Ma −Ms(X)
, ifMa > (1 + ")Ms(X)

CMa"−1, otherwise
, (34)

where Ms and Ma represent the structural mass and the added mass of the fluid per unit area, respectively. C is a constant
parameter that can be either estimated based on the region of the structure with strongest added mass effect, or calibrated to
optimize accuracy. " is a small numerical tolerance to avoid numeric overflow and division by zero. Equation (34) states that
in regions where the added mass of the fluid is greater than the mass of the structure, the value of �f reflects the ratio between
these two quantities. In other regions, where the added mass effect is not significant, a large constant value of �f is used to avoid
loss of accuracy.
We define

Ms = �s(X)ℎ(X) and Ma =
��f
2�

, (35)
where � is the wavelength corresponding to the fundamental frequency of the structure (or the dominant vibration frequency of
the problem). Its value can be either computed through a modal analysis or estimated based on knowledge of the problem.
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5.2 Numerical experiment
To demonstrate and compare the two models introduced above, we consider a modified Turek-Hron problem that is slightly
more complex than the one introduced in Section 4. The flexible beam is designed to have four segments with various density
values, instead of two segments as in Section 4. Each segment has a length of 0.0875 m. The density �s is set to 300, 1, 000,
2, 000, and 10, 000 kg/m3 in the four segments, from left to right. Therefore, the first segment, [0, 0.0875], is the one that has the
strongest added mass effect. Other parameter values involved in the problem are set to be the same as in Section 4, specifically,
in Figure 11 and Table 1.
Figure 18 presents the converged solution, obtained using a 1000 × 200 fluid mesh, a structural mesh with 160 elements, a

time step size of 2.05 × 10−4 s and 6 fluid-structure subiterations per time step. The solution is similar to the previous one in
Section 4, with some subtle differences. For example, Figure 19 compares the structural displacement at three points, marked
as P1, P2, P3 in Figure 18. It shows that the two beams vibrate at slightly different frequencies, and point P1 exhibits different
modes.

-20 0 20
Vorticity

-30 30

−30 −20 −10 0 10 20 30

Vorticity (s-1)

𝒕 = 𝟏𝟎.𝟑𝟓𝟑𝒔

𝒕 = 𝟏𝟎.𝟒𝟕𝟔𝒔

𝒕 = 𝟏𝟎.𝟓𝟗𝟗𝒔

!" !# !$ 𝒕 = 𝟏𝟎.𝟐𝟑𝟎𝒔

FIGURE 18 Vorticity at four time instances during one period of beam vibration.

Next, we perform three groups of numerical tests, using a 500 × 100 fluid mesh, a 80-element structural mesh, and with 3
fluid-structure subiterations per time step. The first group uses a constant value of �f . We first perform a series of simulations
in which the value of �f is varied, while the time step size is set to 8.2 × 10−4 s. We found that the optimal value of �f is
4.25, in the sense that smaller values would give less accurate solutions, while larger values would cause instability. Then, we
conduct another series of simulations in which �f is set to 4.25, while the time step size, Δt, is varied between 4.1 × 10−4 s and
1.64×10−3 s. The second group of tests uses a spatially varying Robin interface condition, modeled using Eq. (33), i.e. Model 1.
We set �f,0 to ensure that along the first segment of the beam, �f (X) = 4.25 (Figure 20(b)). We also varyΔt between 4.1×10−4 s
and 1.64×10−3 s. The third group of tests uses a spatially varying Robin interface condition, modeled using Eq. (34), i.e. Model
2. Again, we ensure that along the first segment of the beam, �f (X) = 4.25, and vary the time step size within the same interval.
In the third group of tests, we specify � = Ū∕fv = D∕St, where Ū and fv denote the mean inflow velocity and the frequency

of vortex shedding, respectively. D is the diameter of the cylinder, and St is the Strouhal number. In other words, because in
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FIGURE 19 Comparison of the structural displacement in the vertical direction: (a) P1 (X = 0.04375 m); (b) P2 (X = 0.175
m); (c) P3 (X = 0.30625 m). For each plot, time is synchronized for the ease of comparison.
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FIGURE 20 (a) Density distribution along the beam. (b) The local values of three tested �f .

this problem the structural deformation is driven by vortex shedding, we use the frequency of vortex shedding to approximate
the dominant frequency of the structure. St can be estimated based on standard measurements for flow past a fixed cylinder. For
example, Williamson showed that for Reynolds number (Re) around 100, St = 0.2175 − 5.1064∕Re [38].
Figure 21 compares the vertical displacement of the beam’s tip during one period of vibration. In addition, Table 3 presents

the numerical error in the maximum vertical tip displacement. Evidently, when the time step size is fixed, both models of
�f (X) provide better accuracy than the optimal constant �f . For example, in terms of maximum beam tip displacement, when
Δt = 8.2 × 10−4 s, Model 1 reduces the error by a factor of 8.17 (2.4% vs. 19.6%), while Model 2 reduces the error by a factor
of 7.54 (2.6% vs. 19.6%). Moreover, by varying the time step size, we can also observe the advantage of the spatially varying
�f (X). The solution obtained with either model of �f (X) using Δt = 1.23×10−3 s is almost as accurate as the solution obtained
with the optimal constant �f using a much smaller time step, Δt = 4.10 × 10−4 s.

6 CONCLUDING REMARKS

We have introduced a spatially varying Robin interface condition for solving fluid-structure interaction problems involving
incompressible flow, non-uniform structure, and strong added mass effect. This idea is motivated both by recent findings about
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FIGURE 21 Comparison of the vertical displacement of beam tip predicted using the two modeled �f (X) and the constant �f .
For comparison purposes, the results of one vibration cycle are presented and synchronized at the beginning of the cycle.

Numerical error in maximum vertical tip displacement (�d)
Time step size Constant �f �f (X)—Model 1 �f (X)—Model 2

Δt = 4.10 × 10−4s 5.1% 1.7% 0.4%
Δt = 8.20 × 10−4s 19.6% 2.4% 2.6%
Δt = 1.23 × 10−3s 79.1% 6.2% 5.4%
Δt = 1.64 × 10−3s 96.7% 9.9% 8.9%

TABLE 3 Numerical error in the maximum vertical tip displacement obtained with the constant �f and two modeled �f (X).

applying a constant-parameter Robin interface condition for uniform structures, and by the practical need to efficiently simulate
more complex structures with spatially varyingmaterial and geometric properties. To assess the spatially varying Robin interface
condition, we have constructed and solved two model problems generalized from well-known benchmark problems, including
a generalized Turek-Hron problem that exhibits large, fluid-induced structural deformation. For both model problems, we first
find, as a baseline, the most accurate result that can be obtained using a constant Robin parameter for a fixed computational cost.
Then, we show that a spatially varying Robin interface condition can clearly improve accuracy (by 93 times in one instance) with
the samemesh resolution, time step size, and number of fluid-structure subiterations, i.e. the same computational cost. Moreover,
we have presented the implementation of the spatially varying Robin interface condition using an embedded boundary method
to couple a projection-based incompressible flow solver with a finite element structural dynamics solver. Furthermore, we have
proposed and demonstrated two closed-form formulas to determine the spatially varying function �f (X) based on the structure’s
local material and geometric properties. The first one simply conforms to the spatial variation of the structure’s properties, while
the second one is designed by estimating the local added mass effect and exploiting a simplified model problem. In summary,
this study has provided evidence that for fluid-structure interaction problems involving non-uniform structures with spatially
varying material and geometric properties, it is beneficial to apply a spatially varying Robin interface condition, as compared to
the constant-parameter version recently discussed in the literature. Future studies may consider exploring additional advantages
of a spatially varying Robin interface condition (e.g., reducing the number of fluid-structure subiterations), developing new
formulas for the spatially varying �f , and applying the spatially varying Robin interface condition to large-scale simulations.
Also, the parameter �f in the Robin interface condition can be generalized to temporally varying or solution-adaptive functions,
which may be beneficial for certain types of problems.
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APPENDIX A: SOLUTION OF A SIMPLIFIED MODEL PROBLEM

We employ a partitioned procedure to separate the fluid and structural sub-systems in Eqs. (11), in which the fluid and the
structural governing equations are solved only once per time step. Take the solution within time step tn to tn+1 as an example.
Given the solution at t = tn (i.e.,W n and P n) as the initial condition, we first solve the fluid sub-system governed by a Laplace
equation with a Robin boundary condition at the fluid-structure interface, i.e.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇2P n+1 = 0 inΩf ,

�f (x)
)P n+1

)y
+ P n+1b = P nb − �f (x)�f

)2W n

)t2
onΣ,
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)y
|

|
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= 0, )P
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|

|

|ΓL
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)y
|

|

|ΓR
, P n+1|

|

|ΓL
= P n+1|

|

|ΓR
.

(36a)

(36b)

(36c)

Then, the resulting pressure load on Σ at t = tn+1 (i.e., P n+1
|Σ) is transferred to structural sub-system. Next, the structural

solution is advanced from tn to tn+1 by solving:
⎧

⎪

⎪

⎪
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⎨
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⎩

EI )
4W
)x4
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)2W
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W |

|

|)Ωs
= 0, )

2W
)x2

|

|

|)Ωs
= 0.

(37a)

(37b)

(37c)

(37d)

More specifically, Eqs. (36) are solved using the conventional two-dimensional five-point finite difference scheme. Eqs. (37) are
first semi-discretized using a standard Galerkin finite-element method. The resulting semi-discrete equation of motion can be
written as

MẄℎ +KWℎ = fext, (38)
where the subscript “h” denotes the semi-discrete solution,M is the mass matrix, K is the stiffness matrix and fext is the vector
of external dynamic loads. Eq. (38) is integrated in time using the Hilber-Hughes-Taylor � (HHT-�) method, which yields a
linear system for solution at t = tn+1 (i.e.,W n+1

ℎ ):
[

K̄
]

W n+1
ℎ =

[

F̄
]

, (39)

where
[
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]

= M
�Δt2

+ (1 − �)K, (40)
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− �K
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M
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2�
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)

Ẅ n
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Then, the acceleration and velocity of the beam at t = tn+1 are computed by

Ẅ n+1
ℎ = 1

�Δt2
[
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ℎ −W n

ℎ − ΔtẆ
n
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−
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Ẇ n+1
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[
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n+1
ℎ

]

. (43)
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The values of �, � and  in the equations above are set by

� = 1∕3,
� = (1 + �)2∕4,
 = 1∕2 + �,

which makes the scheme unconditionally stable.
Remark:We also solve the same model problem using a monolithic procedure, primarily as a way to verify the implementation
of the above partitioned procedure. In the monolithic procedure, Eqs. (11a) and (11c) are discretized in space and time, yielding
a system of linear equations that couples the beam displacement and fluid pressure. Specificially,

⎧

⎪

⎨

⎪

⎩

EI
W n+1
i−2 − 4W

n+1
i−1 + 6W

n+1
i − 4W n+1

i+1 +W
n+1
i+2

Δx4
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i +W
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i b,

P n+1
i+1,j + P

n+1
i−1,j + P

n+1
i,j+1 + P

n+1
i,j−1 − 4P

n+1
i,j = 0.

(44a)

(44b)
Figure 22 compares the solutions obtained using the partitioned and monolithic procedures for Case 1. The fluid and structural

meshes and the time step size are kept the same. As expected, the two numerical solutions are in close agreement.
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FIGURE 22 Comparison of the solutions of the partitioned and monolithic procedures for Case 1: Beam displacement at
t = 10−4 s.
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