
INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 1

Computational Algorithms for Tracking Dynamic Fluid-Structure

Interfaces in Embedded Boundary Methods

K. Wang1, J. Grétarsson1, A. Main1 and C. Farhat∗1,2,3

1 Institute for Computational & Mathematical Engineering

2 Department of Aeronautics and Astronautics

3 Department of Mechanical Engineering

Stanford University, Stanford, CA 94305, U.S.A

SUMMARY

A robust, accurate, and computationally efficient interface tracking algorithm is a key component of an

embedded computational framework for the solution of fluid-structure interaction problems with complex

and deformable geometries. To a large extent, the design of such an algorithm has focused on the case

of a closed embedded interface and a Cartesian Computational Fluid Dynamics (CFD) grid. Here, two

robust and efficient interface tracking computational algorithms capable of operating on structured as well

as unstructured three-dimensional CFD grids are presented. The first one is based on a projection approach,

whereas the second one is based on a collision approach. The first algorithm is faster. However, it is restricted

to closed interfaces and resolved enclosed volumes. The second algorithm is therefore slower. However,

it can handle open shell surfaces and underresolved enclosed volumes. Both computational algorithms

exploit the bounding box hierarchy technique and its parallel distributed implementation to efficiently store

and retrieve the elements of the discretized embedded interface. They are illustrated, and their respective

performances are assessed and contrasted, with the solution of three-dimensional, nonlinear, dynamic fluid-

structure interaction problems pertaining to aeroelastic and underwater implosion applications. Copyright

c© 2011 John Wiley & Sons, Ltd.

Received . . .

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluids 2011; 00:2–35

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld
KEY WORDS: embedded boundary method, immersed boundary method, fluid-structure interaction,

interface tracking, Eulerian

1. INTRODUCTION

Debuted in 1972 for the coupled fluid-structure simulation of blood flows through elastic heart

valves [1], immersed boundary methods have gained tremendous popularity during the last

four decades in Computational Fluid Dynamics (CFD), under different names. These include

embedded boundary [2], fictitious domain [3], and Cartesian [4] methods. All of these and other

related methods which are popular nowadays for a large variety of flow simulations around

fixed [4, 5, 3, 2, 6, 7], moving [9, 10, 11, 7], and deformable [1, 12, 13, 14, 15, 7] bodies, are

collectively referred to in this paper as embedded boundary methods. They are particularly attractive

for dynamic fluid-structure interaction (FSI) problems characterized by large structural motions

and deformations [16] or topological changes [7], for which most alternative arbitrary Lagrangian-

Eulerian (ALE) methods [17, 18, 19] are often unfeasible.

Embedded boundary methods simplify the gridding task as they operate on non body-fitted grids.

Most of them are designed for computations on Cartesian grids [1, 9, 10, 12, 13, 14, 11, 15, 6], but

some have also been tailored for computations on unstructured meshes [20, 7]. However, embedded

boundary methods complicate the treatment of wall boundary conditions in general [4, 5, 3, 2, 9, 10,

11], and fluid-structure transmission conditions in particular [1, 12, 13, 14, 15, 7]. This is essentially

because a non body-fitted CFD grid does not contain a native representation of the wet surface of

the body of interest. To address this issue, embedded boundary methods for CFD rely on a variety

of interface treatment techniques. Typically, these require tracking the position of the embedded

interface (or collection of interfaces representing the entire wet surface of the body of interest) with

respect to the non body-fitted grid. This paper focuses on this specific aspect of embedded boundary

methods for CFD in the context of three dimensions and arbitrary interfaces and grids. For the

∗Correspondence to: Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, U.S.A.

Copyright c© 2011 John Wiley & Sons, Ltd.

Prepared using fldauth.cls [Version: 2010/05/13 v2.00]

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 3

interface treatment itself and load computation algorithms, the reader can consult, for example,

reference [7] and the related reference [8]. For fluid-structure time-dependent coupling algorithms,

the reader is referred to [16, 19] and the references cited therein.

A comprehensive computational tool for tracking a dynamic embedded interface takes as input the

positions and connectivities of a non body-fitted Eulerian CFD grid and and a Lagrangian surface

representing the interface. Usually, its output includes some or all of the following instantaneous

information:

(1) Status of each CFD grid point identifying the medium in which it resides.

(2) Location of the closest points on the embedded interface to a selected set of CFD grid points.

(3) Identification of the intersection of the edges of the CFD and embedded interface.

So far, the computational methods described in the literature for computing the outputs highlighted

above have focused primarily on closed embedded interfaces (e.g. surfaces of solid bodies) and

Cartesian CFD grids [5, 9, 10, 11, 13]. The closed interface assumption has led to several algorithms

for determining item (1) highlighted above that are based on inspecting the outward normals of

simplices in the vicinity of a given grid point [5, 10, 11]. This assumption is limiting however as

many FSI problems such as flapping wings and parachutes involve open thin shell surfaces. The

Cartesian grid assumption simplifies the task associated with item (2) highlighted above. It has led

to the development of both geometric [5, 9, 10, 11] and non-geometric [13] closest point transform

algorithms. However, unstructured grids can be computationally advantageous even for embedded

methods, particularly for complex geometries. Furthermore, most computational algorithms that

have been proposed in the literature for computing the intersections of a given CFD grid and a given

embedded interface are based on identifying the penetrating edges of the CFD grid as those edges

whose end-points lie in different media [9]. However, such algorithms fail when the embedded

interface is closed and intersected twice by one or several edges of the CFD grid (see Figure 5, Case

II). This scenario is likely to occur when the body is thin, and the volume enclosed by its surface

is underresolved by the CFD grid (see Section 4.1). It is detrimental to accuracy as it leads to the

leaking of fluid through the body [7].

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

4 K. WANG ET AL.

This paper focuses on filling the gaps identified above in the computational technology for

tracking dynamic interfaces in embedded boundary methods for CFD. To this effect, it presents

two robust computational algorithms for tracking a dynamic fluid-structure interface with respect

to a three-dimensional, arbitrary CFD grid. Both are capable of delivering all tracking information

outlined above. The first algorithm is based on a projection approach and presented in Section 3.1.

It is robust and fast. However, it is highly accurate only when the embedded interface is closed, and

its enclosed volume is sufficiently resolved by the CFD grid. The second computational algorithm

is presented in Section 3.2. It is motivated by the methods proposed in [21, 12] for computational

graphics. It is based on a collision approach, robust, and highly accurate whether the embedded

interface is closed or open, and the volume it encloses is sufficiently resolved by the CFD grid

or not. However, it is slower than its counterpart described in Section 3.1. Both computational

algorithms exploit the concept of a bounding box hierarchy [22] to efficiently store and access the

elements of a discrete interface. A parallel distributed implementation of this concept is described

in Section 3.3. Finally, both proposed computational algorithms are illustrated in Section 5 with

the solution of three-dimensional, nonlinear, dynamic FSI problems pertaining to aeroelastic and

underwater implosion applications. Their respective performances are also assessed and contrasted

in that section.

2. EMBEDDED COMPUTATIONAL FRAMEWORK FOR FLUID-STRUCTURE

INTERACTION

A mathematical model for a three-dimensional dynamic FSI problem typically involves: (1)

governing fluid equations within a fluid domain Ω?
F (t) ⊂ R3, where t denotes time, (2) governing

structural dynamics equations within a structural domain ΩS(t) ⊂ R3, (3) transmission conditions

at the fluid-structure interface ΣE(t) ⊂ ΣS(t), where ΣS(t) = ∂ΩS(t) denotes the structural domain

boundary, (4) Dirichlet and/or Neumann boundary conditions at the remaining fluid and structural

domain boundaries, and (5) initial conditions (at t = 0) for the fluid and structural state vectors.

In the setting of an Eulerian embedded boundary method for CFD and FSI, Ω?
F (t) is replaced

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 5

by the extended fluid domain ΩF = Ω?
F (t)

⋃
ΩS(t) which therefore includes ΩS(t) as a fictitious

fluid domain region and is time-invariant (see Figure 1). Furthermore, the governing fluid equations

are formulated in the Eulerian framework, whereas the structural dynamics equations are typically

formulated in the Lagrangian setting.

Figure 1. Domain setting of an Eulerian embedded method for fluid-structure interaction: extended fluid

domain ΩF , structural domain ΩS , embedded surface ΣE , and outward normal ~nE to ΣE .

The governing fluid and structural equations are coupled via appropriate transmission conditions

at the fluid-structure interface. For example for an inviscid fluid and a flexible structure, these

conditions can be written as [7] (
~v − ∂~u

∂t

)
· ~nE = 0 on ΣE , (1)

and(
σij + σim

∂uj
∂xm

+ pδij

)
~nE − Tj = 0 on ΣE , j = 1, 2, 3, (2)

where ~v denotes the fluid velocity vector, p denotes the fluid pressure, ~u is the structural

displacement vector, ~nE = ~nE(t) is the outward unit normal to ΣE = ΣE(t), σ = σ(t) denotes the

second Piola-Kirchhoff stress tensor of the structure, δij denotes the Kronecker delta, and Tj denotes

the tractions due to external forces whose origin is not due to the fluid.

Let Dh denote the discretization of the extended fluid domain ΩF by an arbitrary non body-fitted

Eulerian CFD grid, and let DE
h denote the discretization by triangles of the fluid-structure interface

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

6 K. WANG ET AL.

ΣE . Note that DE
h can, but does not need to, coincide with the wet subset of the discretization

of ΣS . In an embedded boundary method, the discrete fluid-structure interface DE
h is immersed

in Dh which otherwise does not contain a representation of this interface. For this reason, the

implementation in a CFD solver of the semi-discretization of the transmission conditions (1) and

(2) is not straightforward. It requires first tracking the position of DE
h with respect to Dh — that

is, generating some or all of the following information, depending on the specifics of the chosen

interface treatment algorithm:

(1) Status of each CFD grid point identifying the medium in which it resides. For an FSI problem

with a single fluid medium, this status determines whether a grid point belongs to the fluid

domain or not. For an FSI problem with multiple fluid media, it also determines the specific

fluid domain it belongs to.

(2) Location of the closest points on the embedded discrete interfaceDE
h to a selected set of points

in Dh.

(3) Identification of the intersection of the edges of Dh with DE
h .

In general, item (1) above is needed in most embedded boundary methods for the purpose of fluid-

structure demarcation. Item (2) is commonly used in ghost-cell based computational methods [11]

for finding the “image” of a “ghost” node in the “real” fluid domain. Item (3) has been needed at least

for two purposes: to define a surrogate fluid-structure interface where to enforce the transmission

conditions [7], and to reshape boundary cells in a cut-cell based computational method [9].

Next, two different computational algorithms are presented for tracking a dynamic fluid-structure

interface with respect to a three-dimensional, arbitrary CFD grid and generating the information

outlined above. Both algorithms take as input the instantaneous position and connectivity of an

embedded discrete interface and a non body-fitted CFD grid. Both operate independently from the

specifics of the numerical scheme chosen for solving the coupled fluid and structural equations.

For this reason, both algorithms can be incorporated into virtually any embedded boundary method

for CFD. The following cycle of the simplest staggered solution procedure [24] equipped with the

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 7

embedded boundary method for CFD described in [7] illustrates the contribution of either algorithm

to the solution of a fluid-structure interaction problem:

1. In the Computational Structural Dynamics (CSD) solver, send the updated displacement and

velocity of the fluid-structure interface to the CFD solver.

2. In the CFD solver, update the position of the embedded discrete interface DE
h , and track it

with respect to the CFD grid Dh using either ALGORITHM 1 or ALGORITHM 2 presented

in Section 3. Then, compute edge-based fluid-fluid and fluid-structure fluxes as follows. For

each edge (Vi, Vj) in Dh connecting the vertices Vi and Vj :

2.1. if both Vi and Vj belong to the fluid domain Ω?
F and edge (Vi, Vj) does not intersect DE

h ,

compute the fluid-fluid flux between Vi and Vj as usual.

2.2. if only one of the two vertices belongs to Ω?
F , declare that (Vi, Vj) intersects DE

h . In this

case, solve a one-dimensional fluid-structure Riemann problem between the “active”

vertex and the interface. Then, compute a fluid-structure flux using the fluid interface

state obtained from the Riemann solver (see [7] for details).

2.3. if both Vi and Vj belong to Ω?
F and edge (Vi, Vj) intersects DE

h , solve a one-dimensional

fluid-structure Riemann problem between each vertex and the interface, then compute a

fluid-structure flux on each side of the interface.

2.4. if neither Vi nor Vj belongs to the fluid domain Ω?
F , do not perform any computation.

3. In the CFD solver, integrate the semi-discretized fluid equations from time t to time t+ ∆t,

compute the fluid-induced load on a surrogate interface, distribute it on the computed fluid-

structure intersection points, and send the distributed load to the CSD solver.

4. In the CSD solver, integrate the semi-discretized structural equations from time t to time

t+ ∆t using the flow-induced load received from the CFD solver.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

8 K. WANG ET AL.

3. DESIGN OF AN INTERFACE TRACKER

Two approaches are presented here for designing an interface tracker that meets the objectives

outlined above. The first one is based on projections. It leads to a tracker that is “optimal” when

the embedded discrete interface is a closed surface and the volume it encloses is resolved by the

CFD grid. The second approach is based on collisions. It leads to an interface tracker that can

handle an open surface such as a membrane sheet, and an underresolved enclosed volume such as

that arising from a thin wing application. It also leads to an interface tracker that is in general more

robust and accurate than that based on projections, but at the expense of a reasonable increase in

computational complexity.

Both interface trackers discussed herein take the following input:

(1) Nodes (grid points) of an arbitrary three-dimensional CFD grid Dh — which can but does not

have to be a Cartesian grid — and edge-to-node and node-to-node connectivities of this grid.

(2) Nodes, and element-to-node and node-to-element connectivities of an embedded discrete

interface DE
h .

In addition, the projection-based approach requires the outward normals ~nE (see Figure 1) to

the geometric surface primitives of DE
h which are assumed here to be triangles. This is a weak

assumption as any n-noded surfacic element with n > 3 can be easily divided into several triangular

elements.

Also, both interface trackers presented below take advantage of the bounding box hierarchy [22].

This technique is a popular form of spatial partitioning. It is used to rapidly determine whether a

grid point of Dh lies near or far from the embedded discrete interface DE
h . The interface tracker

based on the collision approach relies on a robust edge-triangle collision detection algorithm [23]

to determine whether a given edge of Dh intersects a particular triangle of DE
h . In both cases, the

computation of intersections is speeded up by the bounding box hierarchy technique which is used

to eliminate for a given edge all but a few candidate triangles from the list of its potential intersectors

in DE
h .

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 9

3.1. Projection-based approach

This interface tracking approach is based on the principle that only the edges of the CFD grid

connecting a node lying in the fluid medium Ω?
F (t) and a node lying in the structural medium ΩS(t)

can be classified as an intersecting fluid-structure edge. Following this principle and assuming

that (1) the embedded discrete interface has an interior and an exterior — which is equivalent to

assuming that the embedded interface ΣE is a closed surface, and (2) the interior volume it encloses

is resolved by the CFD grid — that is, any edge of Dh that intersects DE
h intersects it at a single

point, the medium in which each node of a given edge of the CFD grid can be identified at each

time-step of a simulation using orthographic projections and flood-fill as described in ALGORITHM

1 below:

ALGORITHM 1

1. For each grid point Vi ∈ Dh, construct an axis-aligned bounding box bi defined as the smallest

axis-aligned box containing Vi and its adjacent nodes.

2. Construct an axis-aligned bounding box hierarchy BE which stores the triangles of DE
h .

3. For each grid point Vi ∈ Dh, determine if it lies close to DE
h , and if it does, find the location

of its closest point on DE
h and determine the status si of Vi. This step can be performed as

follows:

3.1. Set si = −1 to indicate that, so far, the status of Vi is unknown.

3.2. Using the axis-aligned bounding box hierarchy BE , find the set of candidate triangles

C(Vi) ⊂ DE
h that may contain the closest point to Vi denoted here by V ′i . These are the

triangles in DE
h whose bounding boxes intersect bi.

3.3. If C(Vi) 6= ∅, find the location of V ′i and compute φ(V ′i , Vi), the signed distance from V ′i

to Vi. If φ(V ′i , Vi) > 0, set si = 0 to indicate that Vi is inside the fluid domain Ω?
F (t). If

φ(V ′i , Vi) ≤ 0, set si = 1 to indicate that Vi is inside ΩS and thus outside Ω?
F (t).

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

10 K. WANG ET AL.

4. Determine the status of all remaining CFD grid points using a flood-fill algorithm as follows.

For each grid point Vi ∈ Dh, if si 6= −1, loop through its adjacent nodes N(Vi). For each

Vk ∈ N(Vi), if sk = −1, set sk = si.

5. Compute the intersections between the edges of Dh and elements of DE
h as follows. For each

edge (Vi, Vj), if si 6= sj , identify this edge as a fluid-structure intersecting edge. Then, cast a

ray from Vi to Vj and find the intersection point on DE
h .

The critical components of ALGORITHM 1 described above are the search for a given grid point

Vi of its closest point V ′i ∈ DE
h , and the calculation of φ(V ′i , Vi). These are explained next in details.

3.1.1. Closest point on the embedded interface to a given CFD grid point To find V ′i , the closest

point to Vi lying in each triangle Tk ∈ C(Vi) is first determined. It is denoted here by V (k)
i . To this

end, Vi is projected onto the plane containing Tk. The projection point is uniquely determined by

its barycentric coordinates (ξA, ξB , ξC) with respect to Tk, where A, B, and C denote the vertices

of Tk (see Figure 2). If all three coordinates are non-negative, the projection point is V (k)
i . If one

or two coordinates are negative, the projection point lies outside Tk. In this case, V (k)
i is located

either on the line containing an edge of Tk, or at one of its vertices. Therefore, Vi is reprojected in

this case onto each edge of Tk corresponding to a negative coordinate. For example, if ξA < 0, Vi

is projected onto the line determined by BC. If the projection point ends up on an edge of Tk, it is

V
(k)
i . Otherwise, the vertex of Tk that has the minimum distance to Vi is V (k)

i . Finally, V ′i ∈ DE
h is

identified as

V ′i = arg min
Tk∈C(Vi)

‖Vi − V (k)
i ‖2.

3.1.2. Signed distance between a CFD grid point and its closest point on the embedded interface

The magnitude of φ(V ′i , Vi) is simply ‖Vi − V ′i ‖2, which is trivial to compute once V ′i has been

determined. Hence, it remains only to find the sign of this distance. To this effect, three different

cases must be treated separately:

(a) V ′i is inside a triangle Tk ∈ C(Vi).

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 11

A

B C

A>0
B>0
C>0

A> 0
B < 0
C > 0

A< 0 B > 0 C < 0

A> 0
B > 0
C < 0

A< 0 B > 0
C < 0 A< 0

B < 0
C > 0

A> 0 B < 0
C < 0

V1

V2

V1
V2V3 V3

Figure 2. Signs of the barycentric coordinates of the projection point in different regions.

(b) V ′i is not inside a triangle Tk ∈ C(Vi) but is the projection of Vi onto an edge of a triangle

Tk ∈ C(Vi).

(c) V ′i is neither according to case (a) or case (b), but is a vertex of C(Vi).

If V ′i falls in case (a), it is the projection of Vi onto the plane containing a triangle Tk ∈ C(Vi).

In this case, sign (φ(V ′i , Vi)) is determined as the sign of the dot product ~nk ·
−−→
V ′i Vi, where ~nk is the

unit outward normal to Tk and
−−→
V ′i Vi denotes the spatial vector connecting the points V ′i and Vi.

If V ′i falls in case (b), it is the projection of Vi onto an edge of Tk ∈ C(Vi). In this case, the sign

of φ(V ′i , Vi) is determined using information from the two triangles of DE
h sharing this edge. Two

examples are shown in Figure 3. Using the notation shown in this figure, this case is handled as

follows. First, Vi is projected onto the plane determined by one of the aforementioned two triangles

that is not coplanar with it †. For example, suppose that ∆ABD is that triangle, and PVi is the

projection point. Then, vertex C in ∆ABC is projected onto the same plane. The projection point is

denoted by PC . Next, the following scalar quantities sv and sc are introduced

sv =
−−−→
PV iVi · ~nr,

sc =
−−→
PCC · ~nr,

†Vi cannot be coplanar with both triangles, otherwise it falls into case a or c.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

12 K. WANG ET AL.

where ~nr is the unit outward normal to triangle ∆ABD. Then if svsc > 0 (see Figure 3–

Left), sign
(
φ(V ′i , Vi)

)
is determined as sign(−sv). Otherwise if svsc < 0 (see Figure 3–Right),

sign
(
φ(V ′i , Vi)

)
is determined as sign(sv).

Finally, consider case (c) graphically depicted in Figure 4. The set of triangles adjacent to V ′i is

denoted by Ni and shown in dark blue in Figure 4. Extended away from V ′i , these triangles form

an infinite open surface that is denoted here by Ñi and colored in light blue in the same figure.

Consider the plane crossing Vi and orthogonal to ~V ′i Vi. For any point on this plane sufficiently far

from Vi, its closest point on Ñi is either on a face or on an edge (see Figure 4). In other words, this

point, denoted here by Ṽi, falls into case (a) or case (b), and therefore φ(V ′i , Ṽi) can be computed as

discussed above. Finally, the sign of φ(V ′i , Vi) is determined as the sign of φ(V ′i , Ṽi).

C

A

BD

Tk

Tr

nk

nr

PC
PVi

Vi

Vi Vi PVi

Vi

C

A

B

D
PC

nk

nr

Tk

Tr

Figure 3. Determination of the signed distance φ(V ′i , Vi) when V ′i , the closest point to Vi on DE
h , lies on an

edge of a triangle.

3.1.3. Remarks The following remarks are noteworthy:

• Since Dh is time-invariant, Step 1 of ALGORITHM 1 needs to be performed only once.

• Benefiting from the bounding box hierarchy constructed in Step 2 and the fast identification of

the candidate triangles performed in Step 3.2, ALGORITHM 1 is an efficient algorithm with a

computational complexity of the order of O(N logNE), where N is the number of grid points

in Dh and NE is the number of triangles in DE
h .

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 13

Vi

Vi

Vi

Ni

Ni

Vi

Vi

Vi

Ni

Ni

Figure 4. Determination of the signed distance φ(V ′i , Vi) when V ′i , the closest point to Vi on DE
h , is the

vertex of a triangle.

• After the first time-step has been performed, Step 4 of ALGORITHM 1 can be accelerated by

taking into account that the previous status of the CFD grid points is available as follows:

4. For each grid point Vi ∈ Dh, if ni = −1, then C(Vi) = ∅, which implies that Vi is far

from ΣE . For this Vi, set ni to be the same as in the previous time-step.

• Step 5 of ALGORITHM 1 can be skipped if no intersection information is required by the

embedded boundary method of interest.

3.2. Collision-based approach

When the embedded discrete interface DE
h is a closed surface and the volume it encloses is not

resolved by the fluid grid — for example, when the embedded interface is the wet surface of a thin

wing and a single element of the CFD grid embeds pieces of both the upper and lower surfaces of

the wing — or when DE
h is an open surface like a membrane sheet, a different approach for tracking

the interface becomes necessary. Indeed in the first case, the intersecting fluid-structure edge can

connect two points that lie in the same fluid medium, and in the second case, there is no inside and

outside to the embedded surface. To address the above issues, a robust geometric approach based on

the point-simplex collision algorithm[23] is described here to determine whether an edge intersects

DE
h or not and provide the related interface tracking information.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

14 K. WANG ET AL.

The point-simplex collision algorithm is robust in the sense that it is guaranteed to never report

a false negative — that is, to never have an edge erroneously miss DE
h . The trade-off for this

robustness, however, is that such an algorithm occasionally reports false positives, either when an

edge passes close to a sharp feature in DE
h , or when one grid point of an edge lies infinitesimally

close to DE
h . The former case can be addressed by casting rays back and forth along the edge; if

only one of these two rays intersects DE
h , it can be safely treated as a false positive and ignored. In

the latter case where a grid point lies so close to DE
h that determining numerically on which side of

the interface it lies becomes challenging, the grid point can be flagged as “occluded”. Then, every

edge connected to this grid point can be automatically flagged as having intersected the embedded

surface. In this work, occluded vertices are always considered to be inside ΩS — even in the case

of a membrane sheet.

3.2.1. Collision-based interface tracking algorithm The collision-based interface tracking

algorithm can be described as follows:

ALGORITHM 2

1. For each CFD grid point Vi ∈ Dh, construct its axis-aligned bounding box bi.

2. Construct an axis-aligned bounding box hierarchy BE that stores the triangles of DE
h .

3. Using the axis-aligned bounding box hierarchy BE , find for each Vi ∈ Dh the set of triangles

C(Vi) ⊂ DE
h whose bounding boxes intersect bi.

3.1 Thicken each triangle Tk ∈ C(Vi) by a numerical tolerance ε. If Vi lies inside any of the

thickened wedges, flag it as occluded.

3.2 Compute V ′i in the same manner as in Step 3.3 of ALGORITHM 1.

4. For every edge (Vi, Vj), cast a ray rij from Vi to Vj and another ray rji from Vj to Vi against

the triangles in C(Vi) ∩ C(Vj), using the robust point-simplex intersection algorithm.

4.1 If both rij and rji intersect a triangle inDE
h , classify the edge (Vi, Vj) as a fluid-structure

intersecting edge and store the intersection point(s).

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 15

4.2 If either Vi or Vj is occluded, classify (Vi, Vj) as a fluid-structure intersecting edge and

store the occluded node as the intersection point.

5. Determine the node status ni using geometric means and its value at the previous time-step.

If C(Vi) = ∅, then keep ni unchanged.

5.1 For every triangle Tk ∈ C(Vi), use the point-simplex collision algorithm to determine

whether Tk crosses over Vi during the given time-step. In this usage of the point-simplex

collision algorithm, the point is fixed in space while the simplex travels from its position

at time tn to its position at time tn+1. If any simplex crosses over Vi, set ni = −1,

indicating that the status may have changed and therefore must be redetermined.

5.2 For every Vi ∈ {Vi ∈ Dh : ni = −1}, search for visible adjacent nodes Vj with nj 6= −1

(here, a node Vi is said to be visible if (Vi, Vj) is not a fluid-structure edge). If such a

node is found, set ni = nj and repeat this procedure until the status of every node has

been determined or no further updates are possible. Flag any remaining node Vi with a

status ni = −1 as being inside ΩS .

3.2.2. Remarks The following remarks are noteworthy:

• Since Dh is time-invariant, Step 1 of ALGORITHM 2 needs to be performed only once.

• In this work, ε is set to 10−8.

• Step 3.2 of ALGORITHM 2 can be skipped if V ′i is not needed by the embedded boundary

method of interest.

• In Step 4, when either C(Vi) or C(Vj) is ∅, no ray is cast.

• At the beginning of the simulation, the status of a node is unknown. Hence, at t = 0, Step 5 is

replaced by

5 Perform a flood-fill on Dh in order to identify connected components that are separated

by fluid-structure edges. These connected components are classified by user-provided

information. The connected components that are not explicitly classified are flagged as

being inside ΩS .

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

16 K. WANG ET AL.

Figure 5 illustrates the treatments by ALGORITHM 1 and ALGORITHM 2 of three different

realistic cases.

In Case I, the embedded discrete interface is a closed surface (only part of it is drawn). The

volume it encloses is resolved by the CFD grid. In this case, both algorithms give the same results.

In Case II, the embedded discrete interface is also a closed surface. However, the volume it

encloses is not fully resolved by the CFD grid. In this situation, ALGORITHM 1 misses two edges

that intersect the interface twice. These edges with double intersections are detected however by

ALGORITHM 2.

In Case III, the embedded discrete interface is an open surface. In this case, ALGORITHM 1 fails

to detect the correct intersections and attribute the correct statuses. On the other hand, ALGORITHM

2 delivers the correct results for all three types of tracking information.

Case I, ALGORITHM 1

Case I, ALGORITHM 2

Case II, ALGORITHM 1

Case II, ALGORITHM 2

Case III, ALGORITHM 1 (fail)

Case III, ALGORITHM 2

E

E

E

E

E

E

D h

D h

D h

D h D h

D h

Figure 5. Illustration of ALGORITHM 1 and ALGORITHM 2 for three distinctive cases. A point in green

(blue) color represents a CFD grid point lying the fluid (structure) region of the computational domain. An

edge in red represents a fluid-structure intersecting edge.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 17

3.3. Distributed bounding box hierarchy (scoping)

Both ALGORITHM 1 and ALGORITHM 2 described above call for the computation of the bounding

box hierarchy BE for the embedded discrete interface. For dynamic problems, BE is time-

dependent. For complex geometries or sufficiently refined discretizations, the computational cost

associated with its construction is not negligible. Most importantly, for a massively parallel

distributed CFD simulation where the computational domain is typically decomposed into

subdomains, triangles in the embedded discrete interface lying far outside a given CFD subdomain

are irrelevant for that subdomain. Therefore, adding them to the hierarchy is only detrimental to

computational efficiency. Hence, the key idea here is to implement a distributed bounding box

hierarchy for massively parallel computations where the hierarchy is constructed only over triangles

near a given fluid subdomain, thereby creating a scope consisting only of triangles that are relevant

to this particular subdomain.

Consider the simple two-dimensional example shown in Figure 6. Here, the extended

computational fluid domain ΩF , which includes the structural domain ΩS shown in this figure as

an oval, is decomposed in 16 subdomains for parallel computations, for example, on 16 processors.

In the global bounding box hierarchy, the hierarchy is computed in each processor for the entire

interface. However in the distributed bounding box hierarchy, only the component of the interface

that is near a given subdomain is added to that subdomain’s hierarchy. This scoping is illustrated in

Figure 6 whose right side focuses on subdomain 10 and the component of the interface considered

to be near it. Scoping reduces the size, construction CPU time, and query CPU time of the bounding

box hierarchy.

Constructing a distributed bounding box hierarchy for either ALGORITHM 1 or ALGORITHM 2

begins with constructing a global bounding box hierarchy on each processor where all elements of

DE
h are assumed to be stored. Then, this hierarchy is used in the first time-step to identify in each

subdomain — by the processor assigned to this subdomain — the triangles of DE
h that are near each

grid point of this subdomain (the candidate triangles). Next, the candidate triangles are gathered on a

subdomain basis, each forming a scope or relevant component of the embedded discrete interface for

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

18 K. WANG ET AL.

1

2

3

4

5

6

7

8

9
10

11

12131415

16 10

scope 10

Figure 6. CFD subdomains and distributed bounding box hierarchy: scoping for subdomain 10 (right).

that subdomain. In the second time-step, the global bounding box hierarchy stored in each processor

is replaced by its distributed counterpart where only the triangles within the scope of the subdomain

mapped to this processor are stored.

In a dynamic fluid-structure simulation, the embedded discrete interface moves and/or deforms

in time. Therefore in such a simulation, the scope of each subdomain must be updated, in principle,

at every time-step. Assuming that the coupled fluid-structure analyzer obeys a time-step restriction

that typically restrains DE
h from crossing more than one layer of elements of the CFD grid Dh in

a given time-step, the updated subdomain scope needs to include only: (1) the current candidate

triangles for each grid point in the interior of this subdomain, and (2) any additional candidate

triangle for each grid point at the boundary of this subdomain. To obtain the latter information,

interprocessor communication is needed only locally — that is, between processors assigned to

neighboring subdomains.

4. APPLICATIONS AND PERFORMANCE ASSESSMENT

The computational algorithms for interface tracking described in the previous sections were

implemented in the compressible CFD solver AERO-F [17, 18] which is equipped with low-Mach

preconditioning and both ALE [17, 18] and embedded boundary [7] computational frameworks.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 19

Here, these algorithms are demonstrated on three different three-dimensional dynamic fluid-

structure interaction problems.

First, the simulation of the heaving of a rigid thin wing is considered for the purpose of verification

of AERO-F’s embedded boundary method for CFD. This simulation also illustrates Case II of

Figure 5. Verification is performed by comparing the CFD results obtained using the embedded

computational framework of AERO-F equipped with both ALGORITHM 1 and ALGORITHM 2 for

interface tracking, with those obtained using AERO-F’s ALE framework which was successfully

verified and validated in the past for many realistic applications [16, 17, 18]. Next, an underwater

fluid-structure implosion problem for which experimental data is available is considered for the

purpose of validation. This problem features large structural deformations and strong shock waves

initiated at the fluid-structure interface, which challenges both interface tracking algorithms and

embedded boundary methods for CFD. It also illustrates Case I of Figure 5. Finally, the aeroelastic

simulation of the flapping of a pair of extremely thin and flexible wings is considered. This problem

illustrates Case III of Figure 5. It also highlights the capability and robustness of the interface

tracking ALGORITHM 2 with respect to open interfaces and large structural deformations.

In all problems outlined above, Dh is an unstructured tetrahedral mesh. The second and third

problems are two-way coupled fluid-structure interaction problems. To solve them, the CFD solver

AERO-F and the structural analyzer AERO-S [17, 18] are coupled using a provably second-order

partitioned procedure similar to those described in references [24, 25, 26, 27, 16].

Finally, it is noted that all computations are performed in double-precision arithmetic on a parallel

Linux cluster system.

4.1. Verification for a transient subsonic flow past a heaving rigid wing

Here, the problem of computing the unsteady inviscid airflow past a rigid wing in heaving motion

is considered. The wing has a root chord length Lc = 22.0 in, a semi-span Ls = 30.0 in, a tip

chordlength Lt = 14.5 in, and a quarter-chord sweep angle of 45o. Its panel aspect ratio is equal

to 1.65 and its taper ratio is equal to 0.66. Its airfoil section is the NACA 65A004. Hence, this wing

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

20 K. WANG ET AL.

is quite thin. Consequently, it is difficult to construct a non body-fitted CFD grid for this inviscid

flow problem which resolves the volume enclosed by the wet surface of the wing without being

unnecessarily too fine for the external flow computations. In other words, this problem is quite

challenging for interface tracking algorithms.

The wet surface of the wing is discretized with 20, 721 grid points and 41, 438 triangles (Figure 7–

Left). This discrete representation DE
h is embedded in a non body-fitted CFD grid DNBF

h with

105, 030 grid points and 609, 576 tetrahedra (Figure 7–Right).

Figure 7. Thin wing in heaving motion: embedded discrete interface (Left) — cutview at z = 0 of inviscid

non body-fitted CFD grid DNBF
h (Right).

Before performing any flow computation, the performance of the interface tracking algorithms

described in this paper is assessed by computing the intersections between DNBF
h and DE

h . To this

effect, Figure 8 displays the edges of DNBF
h that are flagged as fluid-structure intersecting edges

by ALGORITHM 1 and ALGORITHM 2. The reader can observe that, as anticipated, ALGORITHM 1

misses large swaths of the structure, essentially because the CFD grid does not resolve the structure

everywhere. Hence, this is the same scenario as Case II of Figure 5. More specifically, ALGORITHM

1 does not recognize the CFD grid edges that intersect the embedded discrete interface twice — at

both the upper and lower surfaces of the wing — as intersecting edges, because both vertices of

each edge share the same status (see Step 5 of ALGORITHM 1).

Next, the concept of scoping for constructing a distributed bounding box hierarchy presented in

Section 3.3 is illustrated. To this end, Figure 9 shows the scope decomposition of the embedded

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 21

discrete interface for a partitioning of the CFD grid in 32 subdomains. Compared to the 41, 438

triangles in DE
h , the largest subdomain scope has only 4, 278 triangles.

Figure 8. Thin wing in heaving motion: fluid-structure intersecting edges found by ALGORITHM 1 (Left)

and ALGORITHM 2 (Right).

Figure 9. Thin wing in heaving motion: scope decomposition of the embedded discrete interface for 32

fluid computational subdomains (each color designates a relevant component of the interface for a specific

subdomain for which a bounding box hierarchy is computed on the assigned CPU).

Next, the wing is set in the harmonic heaving motion characterized by the amplitude ha = 0.05 in

and the frequency hf = 500 Hz. The free-stream conditions (Mach number, angle of attack,

density, and pressure) are set to M∞ = 0.3, α∞ = 0deg, ρ∞ = 9.357255× 10−8 (lb/in4).sec2, and

p∞ = 14.5 psi, respectively. For the purpose of verification of the results generated by the embedded

boundary method for CFD equipped with both interface tracking algorithms described in this paper,

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

22 K. WANG ET AL.

a body-fitted grid DBF
h with 896, 167 grid points and 4, 664, 720 tetrahedra is also generated for the

computation of an ALE reference solution of this problem.

Three implicit numerical simulations are performed for a time-interval corresponding to roughly

five periods of the heaving motion:

1.1. A first simulation using the CFD grid DNBF
h , the embedded boundary method, and the

interface tracking ALGORITHM 1.

1.2. Another simulation using the CFD grid DNBF
h , the embedded boundary method, and the

interface tracking ALGORITHM 2.

1.3. A third simulation using the CFD grid DBF
h and the ALE computational framework.

All three simulations outlined above are initialized with a uniform flow corresponding to the free-

stream conditions specified above. The obtained time-histories of the lift are reported in Figure 10

for the first five periods of oscillation (0 sec ≤ t ≤ 0.01 sec). The lift predicted by simulation 1.3

can be considered as a reference lift for two reasons: (1) it is computed on a much finer CFD grid

(896, 167 grid points in DBF
h versus 105, 030 in DNBF

h), and (2) as stated earlier, AERO-F’s ALE

computational framework has been successfully verified and validated for many aerodynamic and

aeroelastic applications in the past. In Figure 10, the reader can observe that the lift predicted by

simulation 1.2 is almost identical to the reference lift, whereas that predicted by simulation 1.1 is less

accurate. This is not surprising given the inaccurate intersection results obtained by ALGORITHM 1

(see Figure 8).

Finally, Table I reports the CPU performance obtained on 32 processors for simulations 1.1

and 1.2. For this problem, ALGORITHM 2 for interface tracking is found to be three times slower

than ALGORITHM 1. However, ALGORITHM 1 is not robust or accurate in this case. Furthermore,

interface tracking with ALGORITHM 2 is also found to consume only 12% of the total CPU time.

Indeed, the computational complexity of an implicit flow solver is in general of the order of

O(N logN), and that of both interface tracking algorithms presented in this paper is of the order

of O(N logNE), where N and NE denote the number of points in the CFD grid and number of

elements in the embedded discrete interface. In most applications,NE is much small thanN because

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 23

0 0.002 0.004 0.006 0.008 0.01
−300

−200

−100

0

100

200

300

400
Total lift

Time (sec)

Li
ft

(lb
.f)

ALE reference
Algorithm 1
Algorithm 2

0 0.5 1 1.5 2 2.5 3
x 10−3

−300

−200

−100

0

100

200

300

400
Total lift

Time (sec)

Li
ft

(lb
.f)

ALE reference
Algorithm 1
Algorithm 2

Figure 10. Thin wing in heaving motion: comparison of the lift time-histories predicted by all three

performed numerical simulations.

Table I. Thin wing in heaving motion: CPU performance results on 32 processors.

Simulation 1.1 Simulation 1.2

Flow computations 949 sec 1, 019 sec

Finite volume fluxes and Jacobians 170 sec 198 sec

Linear system solution (GMRES) 629 sec 641 sec

Various other computations 150 sec 180 sec

Interface tracking 53 sec 154 sec

Total simulation time 1, 042 sec 1, 212 sec

Dh is a three-dimensional entity butDE
h is a two-dimensional one. In this example, the ratio between

NE and N is roughly e =
NE

N
= 0.39.

4.2. Validation for the implosive collapse of an air-filled cylindrical shell submerged in water

Next, the simulation of an underwater implosion experiment recently performed at the University

of Texas at Austin is considered. This experiment features a transient high-speed multi fluid-

structure interaction problem characterized by ultra-high compressions, strong shock waves, and

large structural displacements and deformations. In this simulation, the embedded discrete interface

is well resolved by the non body-fitted CFD grid from the beginning until the full collapse of

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

24 K. WANG ET AL.

the structure. Hence, it can be considered as an illustration of Case I of Figure 5. In such a case,

ALGORITHM 1 and ALGORITHM 2 for interface tracking can be expected to deliver similar results.

4.2.1. Experiment An air-filled aluminum cylinder (the specimen) of length L0 = 5.0014 in,

circular cross section with external diameter D = 1.5007 in, and thickness t = 0.0280 in is

submerged in a rigid water tank. It has a maximum ovalization (imperfection) ∆o = 0.083%. It

is bonded at both ends to two rigid steel plugs which close the cylinder. The unbonded region of the

cylinder has a length L = 2D = 3.0014 in (see Figure 11). The cylinder is maintained at the center

of the tank by a set of bars attached to the rigid tank. It is surrounded by 6 pressure sensors that are

distributed on the mid-plane (orthogonal to the axial direction of the cylinder) with radial distance

d = 2.5± 0.25 in to the center of the cylinder.

Initially, the water outside the cylinder and the air inside it are at rest (v0w = v0a = 0 in/sec).

They have the same pressure p0w = p0a = 14.5 psi. The density of water is ρ0w = 9.357255×

10−5 (lb/in4).sec2. The density of air is ρ0a = 9.357255× 10−8 (lb/in4).sec2. Then, the water

pressure is slowly increased at a constant rate until the cylinder collapses. The final hydrostatic

pressure, under which the cylinder collapses, is pco = 690.5 psi. Two photographs of the collapsed

cylinder are shown in Figure 12. The time at which the cylinder starts to collapse is chosen to

designate t = 0. The recorded pressure time-history by sensor 1 (see Figure 14) reveals first a

gradual pressure drop of 118.0 psi before the cylinder gets into self-contact, followed by a sharp

pressure rise with a peak of 1.16× 103 psi afterward. This sharp pressure rise corresponds to the

strong shock waves caused by self-contact of the structure.

4.2.2. Numerical simulations The geometric center of the cylinder is chosen as the origin of

the Cartesian coordinate system, and its axial direction is chosen as the x-axis. In the structural

dynamics sub-problem, half of the cylinder (length-wise) is modeled. Its aluminum material is

represented as a nonlinear elasto-plastic medium with a Young modulus E = 1.014× 107 psi,

Poisson ratio ν = 0.3, and density ρS = 2.599× 10−4 (lb/in4).sec2. The yield stress is set to

3.909× 104 psi and the hardening modulus to 9.366× 104 psi. The cylinder is discretized by a

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 25

Figure 11. Schematic drawing of a cylindrical implodable with end caps designated by stripes (courtesy of

Stelios Kyriakides).

Figure 12. Photographs of the collapsed cylinder (courtesy of Stelios Kyriakides).

finite element model with 10, 368 four-noded shell elements. The steel plug to which the cylinder is

bonded is represented by 1, 833 four-noded rigid shell elements. The density of these rigid elements

are artificially set to ρP = 4.7363× 10−2 (lb/in4).sec2 so that the total mass of these shell elements

is equal to the total mass of the volumetric steel plug used in the experiment.

A Mode 4 sinusoidal imperfection is imposed on the geometry of the cylinder to trigger its

collapse. More specifically, the circular cross section of the cylinder is replaced by {(r, θ), 0 ≤

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

26 K. WANG ET AL.

θ < 2π} with

r = r0(1−∆ cos 4θ),

where r0 = 0.73635 in is the radius of the true circular cross section measured to the mid-surface

of the cylinder. The imperfection magnitude ∆ is set to be equal to the maximum ovalization of the

specimen in the experiment — that is, ∆ = ∆o = 0.083%.

In the CFD sub-problem, air inside the cylinder is modeled as a perfect gas with a specific heat

ratio γa = 1.4. Because of the ultrahigh compressions involved in this problem, water is modeled as

stiffened gas whose equation of state can be written as

(γ − 1)ρe = p+ γp0,

where e denotes the internal energy per unit mass, and γ and p0 are two constants set here to γw =

4.4 and p0 = 8.7× 107 psi. The fluid computational domain is a rectangular box: Ω = {(x, y, z) ∈

R3 : 0 in ≤ x ≤ 12 in, − 10 in ≤ y ≤ 10 in, − 10 in ≤ z ≤ 10 in}. An unstructured non body-

fitted CFD grid DNBF
h with 1, 689, 089 grid-points and 10, 064, 277 tetrahedra is generated to

discretize Ω (Figure 13). A separate discrete representation of the surface of the cylinder DE
h is

constructed with 12, 275 grid points and 24, 404 triangles and immersed into this CFD grid.

Symmetry boundary conditions are applied to both the fluid and structure models at x = 0. Non-

reflecting boundary conditions are applied to the remaining boundaries of the fluid domain. Sliding

boundary conditions are applied to the plug as well as the bonded region of the cylinder so that

only a free displacement along the x direction is allowed. At t = 0, the initial state of air inside the

cylinder is set to ρ0a, v0a, and p0a. The initial state of water is set to ρ0w, v0w, and p∗a = pco − 10 psi. In

the first 1.5× 10−4 sec of the simulation, the water pressure is increased statically and linearly to

pco, whereas the air pressure inside the cylinder is maintained at p0a. At t = 1.5× 10−4 sec where

the collapse pressure pco is reached, the compressible flow solver is activated.

Two numerical simulations are performed using AERO-F’s embedded boundary method: one

using ALGORITHM 1 for interface tracking (denoted here by simulation 2.1), and the other using

ALGORITHM 2 for this purpose (denoted here by simulation 2.2). Both simulations are carried

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 27

Figure 13. Underwater implosion problem: DE
h (magenta color, Left) and a cut-view at z = 0 of DNBF

h

(Right).

out on 260 processors for AERO-F and a single processor for AERO-S. The water pressure time-

histories are recorded at the sensor locations for the first T = 1.5× 10−3 sec.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10−3

500

600

700

800

900

1000

1100

1200
Sensor 1

Time (sec)

Pr
es

su
re

 (p
si

)

Experiment
Algorithm 1
Algorithm 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10−3

500

600

700

800

900

1000

1100

1200
Sensor 2

Time (sec)

Pr
es

su
re

 (p
si

)

Experiment
Algorithm 1
Algorithm 2

Figure 14. Underwater implosion problem: predicted and measured pressure time-histories (sensor 1, Left

— sensor 2, Right).

The predicted pressure time-histories are reported at two different sensors labeled here as sensor 1

and sensor 2 in Figure 14, together with the corresponding experimental data. As expected, AERO-

F’s embedded boundary method equipped with either interface tracking algorithm presented in this

paper delivers almost the same results. More importantly, these results reproduce the main features

of the experimental data, including the highest pressure peak and the width of the pressure jump.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

28 K. WANG ET AL.

The structural deformation of the specimen predicted at T = 1.5× 10−3 sec by simulation 2.1 is

shown in Figure 15. That predicted by simulation 2.2 is almost identical. The reader can observe

that this deformation approaches well that obtained experimentally (see Figure 12).

Figure 15. Underwater implosion problem: predicted deformation of the cylinder at T = 1.5× 10−3 sec

(simulation 2.1).

In this problem, the ratio between the number of elements NE in the embedded discrete interface

and the number of grid points N in the non body-fitted CFD is e =
NE

N
= 0.014. The total CPU

time elapsed in interface tracking is 566 sec in simulation 2.1 and 1, 355 sec in simulation 2.2.

These timings account for only 1.9% and 4.1% of the total CPU time of simulation 2.1 and 2.2,

respectively.

4.3. Application to the aeroelastic simulation of flapping wings

The aeroelastic simulation of a pair of ultra-thin flapping wings is considered here. The wings have

a triangular shape. They are assumed to be made of a polyester film. For simplicity, the behavior

of this film is assumed to be elastic and characterized by a Young modulus Ep = 3.79× 109 Pa,

Poisson ratio νp = 0.35, and density ρp = 1.4× 10−3 g/mm3. The wings have a uniform thickness

of 0.16 mm only, except in some areas where structural reinforcement is implemented in the form

of strips with a four times larger thickness equal to 0.64 mm (see Figure 16). Another structural

reinforcement is made at the leading edges of the wings in the form of two stiff elastic fibers with the

same circular cross section and the following material properties: Ef = 5.55× 109 Pa, νf = 0.34,

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 29

and ρf = 1.465× 10−3 g/mm3. The cross sectional area of each fiber is Af = 0.916088 mm2 and

its cross sectional moments of inertia about the local and centroidal x-, y-, and z-axis are Ixx =

0.133566 g.mm2, and Iyy = Izz = 0.0667828 g.mm2, respectively. The wings are discretized by one

layer of 1, 152 geometrically nonlinear three-noded shell elements with two different thicknesses as

mentioned above. The fiber reinforcements are discretized by 48 two-noded geometrically nonlinear

beam elements. Gravity is applied to this structural model with a uniform constant acceleration

~g = (0, 0, − 9800 mm/sec2). The displacement degrees of freedom at the two points located

at the leading and trailing edges of the root chord (shared by both triangular wings) are fixed.

The rotational degrees of freedom about the local y-axis at these two points are prescribed to the

harmonic time-variation

θ(t) = θ0 sin(ωt),

where θ0 = 38deg and ω = 14.5Hz, which drives the flapping of both wings.

Because they are extremely thin, the wings considered here are extremely flexible. This makes

the simulation of their structural dynamics particularly challenging as the finite element modeling

of such thin structures is typically sensitive to numerical errors.

!

"

#

(0,0,0)

reinforcement
by stiff fibers

reinforcement
via thickening

140 mm

81
 m

m

140 mm

Figure 16. Ultra-thin flexible flapping wings: description and structural modeling.

The flow is assumed to be inviscid. From the physics viewpoint, this is a gross assumption.

However, it has no effect on the illustration and evaluation of the interface tracking algorithms

presented in this paper. To this effect, a non body-fitted CFD grid with 2, 086, 997 grid points and

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

30 K. WANG ET AL.

12, 462, 983 tetrahedra is generated (see Figure 17 and Figure 18). The 1, 152 surfacic triangles of

the structural model described above are collected into a discrete fluid-structure interface that is

embedded in this CFD grid. This embedded discrete interface is an open surface. Its dynamics can

be tracked by ALGORITHM 2 but not by ALGORITHM 1. Hence, the simulation considered herein

illustrates Case III of Figure 5.

Figure 17. Ultra-thin flexible flapping wings: computational fluid domain for a dynamic aeroelastic

simulation.

Figure 18. Ultra-thin flexible flapping wings: non body-fitted CFD grid — cutview at y = 5 mm (Left) and

cutview at z = 0 mm (Right).

The aeroelastic simulation, referred to here as simulation 3.1, is performed using AERO-F’s

embedded boundary method equipped with ALGORITHM 2 for interface tracking and AERO-S. 260

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 31

Figure 19. Ultra-thin flexible flapping wings: intersecting edges and node statuses identified by ALGORITHM

2.

processors are allocated for AERO-F and a single processor is allocated for AERO-S. At t = 0, the

flow is initialized with the uniform state defined by ρ = 1.3× 106 g/mm3, velocity v = 0 mm/sec,

and pressure p = 105 g/(mm.s2) = 105 Pa. Subsequently, the coupled aeroelastic responses of the

flow and flapping wings are computed until T = 0.3 sec — which corresponds to roughly four

flapping cycles.

Figure 19 displays the intersecting edges identified by ALGORITHM 2 near a wing tip at some

time-instance tn. These edges are shown as gray bars. The embedded discrete interface is shown

in red. The status of the end-points of the intersecting edges is also color coded. The reader can

observe that all end points of intersecting edges share the same green color, which indicates that

these grid points are correctly identified as residing in the same flow medium (air).

The time-history of the displacement degree of freedom along the z-axis at one wing tip is

reported in Figure 20. Its maximum amplitude is about 100 mm — that is, 71% of a wing semi-

span. Color plots of the fluid pressure field and structural deformation at six different time-instances

are shown in Figure 21. The large structural displacements and rotations and the high frequency

content of the vibrations are evident.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

32 K. WANG ET AL.

In this coupled fluid-structure simulation, the cost of interface tracking is negligible. More

specifically, it consumes only 108 seconds of the 5.9 hours of simulation — that is, 0.5% of the

total simulation time. This is because in this case, e =
NE

N
= 5.5× 10−4.

0 0.05 0.1 0.15 0.2 0.25 0.3

−100

−50

0

50

100

Tip displacement along z−axis

Time (sec)

D
is

pl
ac

em
en

t (
m

m
)

Simulation 3.1

Figure 20. Ultra-thin flexible flapping wings: time-history of a tip displacement along the z-axis.

Figure 21. Ultra-thin flexible flapping wings: snapshots of the fluid pressure (cutview at y = 20 mm) and

structural deformation at six different time-instances.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 33

5. CONCLUSIONS

Interface tracking algorithms are critical components of embedded boundary computational

frameworks for dynamic fluid-structure interaction problems with complex and deformable

geometries. To this effect, two tracking algorithms capable of operating on structured as well

as unstructured three-dimensional CFD grids have been presented in this paper. The first one is

based on a projection approach, whereas the second one is based on a collision approach. The first

algorithm is faster. However, it is restricted to closed interfaces and resolved enclosed volumes.

The second algorithm is more versatile as it can handle open surfaces and underresolved enclosed

volumes. Both computational algorithms have been equipped with a parallel distributed bounding

box hierarchy to efficiently store and retrieve the elements of the discretized embedded interface.

As a result, both interface tracking algorithms deliver a fast parallel performance. For several

challenging three-dimensional, nonlinear, dynamic fluid-structure interaction problems arising from

aeroelastic and underwater implosion applications, they were found to consume a small to tiny

percentage of the total simulation CPU time.

ACKNOWLEDGMENTS

The authors acknowledge partial support by the Office of Naval Research under Grant N00014-

06-1-0505 and Grant N00014-09-C-015, partial support by the Army Research Laboratory through

the Army High Performance Computing Research Center under Cooperative Agreement W911NF-

07-2-0027, and partial support by The Boeing Company under Contract Sponsor Ref 45047. The

content of this publication does not necessarily reflect the position or policy of any of these

supporters, and no official endorsement should be inferred. The authors also thank Dr. Michel

Lesoinne for his contribution to the design of the projection-based interface tracking algorithm.

REFERENCES

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

34 K. WANG ET AL.

1. Peskin CS. Flow patterns around heart valves: a numerical method. Journal of Computational Physics 1972; 10:252-

271.

2. Kreiss HO, Petersson A. A second-order accurate embedded boundary method for the wave equation with Dirichlet

data. SIAM Journal of Scientific Computation 2006; 27:1141–1167.

3. Glowinski R, Pan TW, Kearsley AJ, Periaux J. Numerical simulation and optimal shape for viscous flow by a

fictitious domain method. International Journal for Numerical Methods in Fluids 2005; 20:695–711.

4. Johansen H, Colella P. A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains.

Journal of Computational Physics 1998; 147:60–85.

5. Udaykumar H, Mittal R, Shyy W. Computation of solid-liquid phase fronts in the sharp interface limit on fixed

grids. Journal of Computational Physics 1999; 153:535–574.

6. Mittal R, Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics 2005; 37:239–261.

7. Wang K, Rallu A, Gerbeau J-F, Farhat C. Algorithms for interface treatment and load computation in embedded

boundary methods for fluid and fluid-structure interaction problems. International Journal for Numerical Methods

in Fluids, DOI: 10.1002/fld.2556.

8. Farhat C, Rallu A, Shankaran S. “A higher-order generalized ghost fluid method for the poor for the three-

dimensional two-phase flow computation of underwater implosions,” Journal of Computational Physics 2008;

227:7674–7700.

9. Udaykumar H, Mittal R, Rampunggoon P, Khanna A. A sharp interface Cartesian grid method for simulating flows

with complex moving boundaries. Journal of Computational Physics 2001; 174:345–380.

10. Gilmanov A, Sotiropoulos F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D,

geometrically complex, moving bodies. Journal of Computational Physics 2005; 207:457–492.

11. Mittal R, Dong H, Bozkurttas M, Najjar FM, Vargas A, von Loebbecke A. A versatile sharp interface immersed

boundary method for incompressible flows with complex boundaries. Journal of Computational Physics 2008;

227:4825–4852.

12. Guendelman E, Selle A, Losasso F, Fedkiw R. Coupling water and smoke to thin deformable and rigid shells.

SIGGRAPH 2005, ACM TOG 24 2005; 973–981.

13. Deiterding R, Radovitzky R, Mauch S, Noels L, Commings J, Meiron D. A virtual test facility for the efficient

simulation of solid material response under strong shock and detonation wave loading. Engineering with Computers

2006; 22:325–347.

14. Cirak F, Deiterding R, Mauch S. Large-scale fluid-structure interaction simulation of viscoplastic and fracturing

thin-shells subjected to shocks and detonations. Computers and Structures 2007; 85:1049–1065.

15. Grétarsson J, Kwatra N, Fedkiw R. Numerically Stable Fluid-Structure Interactions Between Compressible Flow

and Solid Structures. Journal of Computational Physics 2011; 230:3062–3084.

16. Farhat C, Rallu A, Wang K, Belytschko T. Robust and provably second-order explicit-explicit and implicit-

explicit staggered time-integrators for highly nonlinear fluid-structure interaction problems. International Journal

for Numerical Methods in Engineering 2010; 84:73–107.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

INTERFACE TRACKING IN EMBEDDED BOUNDARY METHODS 35

17. Farhat C, Geuzaine P, Brown G. Application of a three-field nonlinear fluid-structure formulation to the prediction

of the aeroelastic parameters of an F-16 fighter. Computers & Fluids 2003; 32:3–29.

18. Geuzaine P, Brown G, Harris C, Farhat C. Aeroelastic dynamic analysis of a full F-16 configuration for various

flight conditions. AIAA Journal 2003; 41:363–371.

19. Farhat C, Lesoinne M, Maman N. Mixed explicit/implicit time integration of coupled aeroelastic problems: three-

field formulation, geometric conservation and distributed solution. International Journal for Numerical Methods in

Fluids 1995; 21:807–835.

20. Löhner R. Applied computational fluid dynamics techniques: an introduction based on finite element methods

(second ed.), John Wiley & Sons (2008) ISBN 978-0-470-51907-3.

21. Robinson-Mosher A, Shinar T, Gretarsson J, Su J, Fedkiw R. Two-way coupling of fluids to rigid and deformable

solids and shells. SIGGRAPH 2008, ACM TOG 27 2008; 46.1–46.9.

22. Agarwal PK, de Berg M, Gudmundsson J, Hammar M, Haverkort HJ. Box-trees and R-trees with near-optimal

query time. Discrete & Computational Geometry 2002; 28:291–312.

23. Bridson R, Fedkiw R, Anderson J. Robust treatment of collisions, contact and friction for cloth animation. ACM

Trans. Graph. 2002; 21:594–603.

24. Piperno S, Farhat C, Larrouturou B. Partitioned procedures for the transient solution of coupled aeroelastic problems

- Part I: model problem, theory, and two-dimensional application. Computer Methods in Applied Mechanics and

Engineering 1995; 124: 79–112.

25. Piperno S, Farhat C. Partitioned procedures for the transient solution of coupled aeroelastic problems - Part

II: energy transfer analysis and three-dimensional applications. Computer Methods in Applied Mechanics and

Engineering 2001; 190: 3147–3170.

26. Farhat C, Lesoinne M. Two efficient staggered procedures for the serial and parallel solution of three-dimensional

nonlinear transient aeroelastic problems. Computer Methods in Applied Mechanics and Engineering 2000; 182:

499–516.

27. Farhat C, van der Zee KG, Geuzaine P. Provably second-order time-accurate loosely-coupled solution algorithms

for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics and Engineering

2006; 195:1973–2001.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld

	1 Introduction
	2 Embedded computational framework for fluid-structure interaction
	3 Design of an interface tracker
	3.1 Projection-based approach
	3.1.1 Closest point on the embedded interface to a given CFD grid point
	3.1.2 Signed distance between a CFD grid point and its closest point on the embedded interface
	3.1.3 Remarks

	3.2 Collision-based approach
	3.2.1 Collision-based interface tracking algorithm
	3.2.2 Remarks

	3.3 Distributed bounding box hierarchy (scoping)

	4 Applications and performance assessment
	4.1 Verification for a transient subsonic flow past a heaving rigid wing
	4.2 Validation for the implosive collapse of an air-filled cylindrical shell submerged in water
	4.2.1 Experiment
	4.2.2 Numerical simulations

	4.3 Application to the aeroelastic simulation of flapping wings

	5 Conclusions

